

If you want to automate your SharePoint 2010 environment,
this book is for you.

—Dr. Tobias Weltner, MVP PowerShell and
PowerShellPlus Software Architect

This book is a must for all SharePoint administrators!
—Göran Husman, SharePoint MVP and author

PowerShell should be at the top of every SharePoint IT
pro and developer toolbox.

—Jeremy Thake, SharePoint Server MVP

A must-read, task-based guide to using PowerShell
for SharePoint administration.

—Ravikanth Chaganti, MVP PowerShell

About the Authors
Niklas Goude is a technical consultant for Enfo Zipper in Sweden, who works with
infrastructure and migration projects. Niklas specializes in the Microsoft environment,
focusing on Active Directory, SQL Server, and SharePoint products and technologies.
Most of his daily work is performed using Windows PowerShell. He is also a trainer,
teaching Microsoft courses focused on Windows PowerShell, and has been a speaker at
various conferences such as Microsoft Tech Days, SharePoint & Exchange Forum, and
SharePoint conferences in Australia and New Zealand.

Niklas is active in the PowerShell community, acting as a moderator for Scripting
Guy’s official forum and an expert at SecretsOfSharePoint.com. He has also written an
e-book about the fundamentals of Windows PowerShell (in Swedish), which can be
downloaded for free from www.powershell.se. Niklas contributes to the PowerShell
community by sharing scripts, guides, and ideas through his blog at www.powershell
.nu. In 2010, Microsoft recognized Niklas for his technical knowledge and community
activities by acknowledging him as a Microsoft Most Valued Professional (MVP).

Niklas lives in Stockholm, Sweden with his wife Anna, his collection of guitars, and
a lot of computers.

Mattias Karlsson is a senior consultant for Enfo Zipper in Sweden. Mattias has a
long history of working with SharePoint products and technologies, focusing mainly on
solution architecting, implementation, administration, and configuration of SharePoint
environments in midsize to large enterprise companies.

Mattias is active in the SharePoint community. He contributes his experience, lessons
learned, and thoughts on SharePoint via his popular blog at www.mysharepointofview
.com. He is also a moderator and expert in residence at SecretsOfSharePoint.com and
has contributed to CodePlex projects. He is a frequent trainer and speaker at both
national and international SharePoint events, and helps organize the Swedish usergroup
meetings in Gothenburg.

Mattias lives in Gothenburg, Sweden together with his girlfriend Caroline, enjoys
football, and is slightly addicted to Seinfeld.

About the Technical Editor
Sergey Zelenov is a Premier Field Engineer working for Microsoft in the United
Kingdom. Most of the ten years of his IT career—which has spanned countries, as well
as companies and roles—has been spent working with the Microsoft SharePoint prod-
ucts and technologies, beginning from the early days of SharePoint Team Services 1.0,
back in 2001. Sergey is also an avid scripter. He started with Windows Scripting Host,
VBScript, and Perl, and has recently developed a true addiction to Windows PowerShell.
He uses Windows PowerShell on almost a daily basis to help Microsoft customers meet
various challenges in their SharePoint environments. To share his exciting findings in
the Windows PowerShell land with the wider world, Sergey contributes to the From
The Field blog (http://sharepoint.microsoft.com/Blogs/fromthefield), the SharePoint
Management PowerShell Scripts project on CodePlex (http://sharepointpsscripts
.codeplex.com/), and the Microsoft TechNet Script Center.

Sergey lives in London with his wife and 2-year-old son.

PowerShell for
Microsoft® SharePoint® 2010

Administrators

NIKLAS GOUDE AND MATTIAS KARLSSON

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan

New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2011 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of the publisher.

ISBN: 978-0-07-174798-1

MHID: 0-07-174798-2

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-174797-4,
MHID: 0-07-174797-4.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we
use names in an editorial fashion only, and to the benefi t of the trademark owner, with no intention of infringement of the trademark. Where such
designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs.
To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is
not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGrawHill”) and its licensors reserve all rights in and to the work. Use of this
work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may
not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish
or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom. McGraw-Hill has
no responsibility for the content of any information accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be
liable for any indirect, incidental, special, punitive, consequential or similar damages that result from the use of or inability to use the work, even if
any of them has been advised of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether
such claim or cause arises in contract, tort or otherwise.

Practical Guides for
Microsoft SharePoint 2010 Users

of Every Level

Available everywhere books are sold, in print and ebook formats.

v

At a Glance

Part I An Introduction to SharePoint 2010

1 Overview of SharePoint 2010 3
2 Managing SharePoint 2010 31

Part II An Introduction to PowerShell in SharePoint 2010

3 Getting Started with PowerShell
 in SharePoint 2010 49

4 Managing SharePoint 2010 with
 Windows PowerShell 71

5 Variables, Arrays, and Hashtables 87
6 Operators . 107
7 Flow Control and Object Disposal 125
8 Functions, Scripts, and Remoting 139

vi PowerShel l for Microsoft SharePoint 2010 Administrators

Part III SharePoint 2010 and PowerShell: Real-World Solutions

9 Scripted Installation 155
10 Working with Web Applications 165
11 Working with Site Collections 181
12 Managing Sites . 195
13 Managing the Look and Feel of Sites 203
14 Working with SharePoint Lists 215
15 Managing SharePoint List Items 233
16 Managing Documents in

 Document Libraries 251
17 Managing Versioning 271
18 Managing Service Applications 281
19 Managing Users and Groups 295
20 Working with Content Databases 307
21 Backup and Restore 321

 Index . 333

vii

Contents

Foreword . xv
Acknowledgments . xvii
Introduction . xix

Part I

An Introduction to SharePoint 2010

1 Overview of SharePoint 2010 . 3
Capability Areas of SharePoint 2010 . 4

Sites . 5
Communities . 7
Content . 9
Search . 11
Insights . 13
Composites . 14

Improvements for Administrators in SharePoint 2010 15
Flexible Deployments . 15
Productivity . 17
Unified Infrastructure . 18

viii PowerShel l for Microsoft SharePoint 2010 Administrators

System Requirements . 19
Architectural Components . 21

Server Farm . 21
Service Applications . 22
Application Pools . 22
Web Applications . 23
Content Databases . 23
Site Collections . 25
Sites . 26
My Sites . 29

Summary . 29

2 Managing SharePoint 2010 . 31
Central Administration . 32

Web Applications Management . 33
Service Application Management . 35
Health and Monitoring . 36
Backup and Restore . 40
Configuration Wizard . 41
Managed Accounts . 42

STSADM . 43
SharePoint Designer . 44
Summary . 45

Part II

An Introduction to PowerShell in SharePoint 2010

3 Getting Started with PowerShell
 in SharePoint 2010 . 49

Starting Up Windows PowerShell . 50
Windows PowerShell Basics . 50

Why Use Windows PowerShell? . 51
What Are Objects in Windows PowerShell? 51
What Are Windows PowerShell Cmdlets? 52

SharePoint 2010 Cmdlets . 53
Finding the SharePoint 2010 Cmdlets 54

Pipelines . 65
Using Select-Object in a Pipeline . 65
Measuring Objects in Windows PowerShell 68
Sorting Objects in Windows PowerShell 68

Summary . 69

ixContents

4 Managing SharePoint 2010 with
 Windows PowerShell . 71

Managing Permissions in SharePoint 2010 72
Managing Content Databases in SharePoint 2010 73

Getting a SharePoint 2010 Content Database 73
Configuring the SharePoint 2010 Content Database 75
Attaching and Detaching a Content

Database in SharePoint 2010 . 75
Creating a New Content Database 76
Removing a Content Database in SharePoint 2010 77

Managing SharePoint 2010 Web Applications 77
Getting Web Applications in SharePoint 2010 78
Modifying Web Applications in SharePoint 2010 78
Creating a New Web Application in SharePoint 2010 79
Removing a Web Application in SharePoint 2010 80

Managing SharePoint 2010 Sites . 81
Configuring a Site Collection in SharePoint 2010 81
Backing Up and Restoring Site Collections

in SharePoint 2010 . 82
Creating a New Site Collection . 82
Removing Site Collections in SharePoint 2010 83

Managing SharePoint 2010 Sites . 83
Creating Sites in SharePoint 2010 . 83
Configuring Sites in SharePoint 2010 84
Exporting and Importing Sites in SharePoint 2010 84
Removing Sites in SharePoint 2010 86

Summary . 86

5 Variables, Arrays, and Hashtables 87
Variables in Windows PowerShell . 88

Working with Variables . 88
Data Types . 90
Properties and Methods . 92
Automatic Variables . 96
Preference Variables . 98
Environment Variables . 100

Arrays in Windows PowerShell . 101
Hashtables in Windows PowerShell . 103
Summary . 105

6 Operators . 107
Arithmetic Operators . 108
Assignment Operators . 110

x PowerShel l for Microsoft SharePoint 2010 Administrators

Comparison Operators . 112
Logical Operators . 115
Redirection Operators . 117
Type Operators . 118
Special Operators . 119
Summary . 122

7 Flow Control and Object Disposal 125
Conditional Statements . 126

The if/elseif/else Statement . 126
The switch Statement . 127

Looping Statements . 129
The for Loop . 129
The do/while Loop . 130
The foreach Loop . 131

Flow-Control Cmdlets . 132
The ForEach-Object Cmdlet . 132
The Where-Object Cmdlet . 134

Object Disposal . 135
Dispose Method . 135
The Start-SPAssignment and

Stop-SPAssignment Cmdlets . 136
Summary . 137

8 Functions, Scripts, and Remoting 139
Windows PowerShell Functions . 140
Windows PowerShell Scripts . 143

Setting the Execution Policy . 143
Executing Scripts . 144
Using Parameters in Scripts . 145
Writing Comment-Based Help Topics in Scripts 145
Using Functions in Scripts . 146
Customizing Windows PowerShell

with Profile Scripts . 147
Windows PowerShell Remoting . 148

Entering a Remote Session . 149
Running SharePoint 2010 Cmdlets Remotely 150

Summary . 151

xiContents

Part III

SharePoint 2010 and PowerShell: Real-World Solutions

9 Scripted Installation . 155
Scripted Installation of SharePoint 2010
Using Windows PowerShell . 156
Automate a SharePoint 2010 Installation 159
Connecting and Disconnecting Servers

with Windows PowerShell . 161
Additional Functionality in SharePoint 2010 162
Summary . 163

10 Working with Web Applications 165
Extending a Web Application . 166

Creating Managed Accounts . 166
Create a New Web Application . 167
Extending the New Web Application 168
Scripting the Extranet Solution . 169

Deploying Solution Packages . 173
Using Cmdlets to Manage Solution Packages 173
Scripting Solution Package Updates 175

Additional Functionality in SharePoint 2010 178
Summary . 180

11 Working with Site Collections . 181
Creating Site Collections Based

on an Excel Spreadsheet . 182
Working with Excel Spreadsheets 182
Creating the Site Collections . 185

Creating Site Collections Based on
Items in a SharePoint 2010 List . 186

Working with SharePoint 2010 Lists 186
Scripting the Site Collection Creation 189

Additional Functionality in SharePoint 2010 191
Summary . 193

12 Managing Sites . 195
Validating Site Usage . 196
Getting Site Contact Information . 197
Check Site Usage Script . 199
Additional Functionality in SharePoint 2010 201
Summary . 202

xii PowerShel l for Microsoft SharePoint 2010 Administrators

13 Managing the Look and Feel of Sites 203
Managing Themes . 204

Getting the Current Theme . 204
Getting the Available Themes . 205
Setting a New Theme . 206

Changing the Site Logo, Title, and Description 207
Changing the Logo . 207
Changing the Title and Description 208

Managing Navigation . 209
Enabling the Tree View . 209
Managing the Quick Launch Navigation 209
Managing Top Navigation . 211

Additional Functionality in SharePoint 2010 212
Summary . 214

14 Working with SharePoint Lists 215
Managing SharePoint Lists . 216

Creating a New List . 216
Creating a Custom List . 217
Getting List Instances . 219
Adding Lists to the Quick Launch Bar 220
Deleting Lists . 221

Managing SharePoint Fields . 222
Creating a New Field . 223
Adding a Choice Field . 224
Adding a Lookup Field . 226

Managing SharePoint Views . 227
Modifying a View . 227
Creating a New View . 229
Removing a View . 230

Additional Functionality in SharePoint 2010 231
Summary . 232

15 Managing SharePoint List Items 233
Creating List Items . 234
Updating List Items . 239
Deleting List Items . 242
Copying List Items . 245
Additional Functionality in SharePoint 2010 248
Summary . 249

xiiiContents

16 Managing Documents in Document Libraries 251
Working with Document Libraries . 252

Creating Document Libraries . 252
Uploading and Managing Files . 254
Copying Documents Between Document Libraries 256
Checking Out Files . 259
Checking In Files . 261

Managing Content Types . 266
Additional Functionality in SharePoint 2010 268
Summary . 269

17 Managing Versioning . 271
Content Approval . 272
Version History . 273
Draft Item Security . 275
Require Check Out . 277
Additional Functionality in SharePoint 2010 278
Summary . 279

18 Managing Service Applications 281
Working with Service Applications . 282

Creating Service Applications . 282
Managing Service Applications . 284
Removing Service Applications . 287

Sharing Service Applications Between Farms 287
Exchanging Root Certificates . 287
Copying an STS Certificate . 289
Configuring the Application Discovery

and Load Balancing Service Application 289
Publishing a Service Application . 290

Additional Functionality in SharePoint 2010 292
Summary . 293

19 Managing Users and Groups . 295
Working with Groups . 296

Creating Groups . 296
Modifying SharePoint Groups . 298
Removing Groups . 300

Working with Users . 301
Adding Users in SharePoint 2010 301
Modifying Users in SharePoint 2010 302
Removing Users in SharePoint 2010 303

Additional Functionality in SharePoint 2010 303
Summary . 306

xiv PowerShel l for Microsoft SharePoint 2010 Administrators

20 Working with Content Databases 307
Managing Content Database Naming 308

Storing Content Database Information 308
Detaching Content Databases . 311
Renaming Content Databases . 311
Reattaching Content Databases . 313
Scripting Content Database Renaming 313

Setting Up Remote BLOB Storage . 315
Configuring the Database to Use RBS 316
Installing the RBS Provider . 317
Enabling RBS in SharePoint 2010 . 318

Additional Functionality in SharePoint 2010 320
Summary . 320

21 Backup and Restore . 321
Backing Up and Restoring SharePoint Farms 322
Creating Database Snapshots . 324
Exporting and Importing Sites, Lists, and List Items 324
Restoring Data from an Unattached Content Database 326
Additional Functionality in SharePoint 2010 329
Summary . 331

 Index . 333

xv

Foreword

Windows SharePoint 2010 is a huge product. Believe it or not, it is also a
complicated product. Sure, you can launch startup—click, click, click
through the wizard—and come out on the other side with a SharePoint

installation, but that is only scratching the surface.
Windows SharePoint is one of the fastest growing products in history, and it

is quickly becoming mission-critical for numerous companies around the world.
Whereas SharePoint 2007 was a really cool product, with an automation API, its
use for automation purposes was a bit complicated for the average SharePoint
administrator. This is why Windows PowerShell is included as a management
tool for SharePoint 2010.

But guess what? When you attempt to automate a huge and complicated
product, the automation tools quickly become unwieldy. Even when leveraging
the Windows PowerShell intuitive automation model, and following the Windows
PowerShell naming scheme using verbs like get to get things and set to set things,
it can still become confusing.

With more than 500 Windows PowerShell cmdlets, administrators and
consultants arriving at the steps of Windows SharePoint 2010 automation for
the first time need a guide. That guide is PowerShell for Microsoft SharePoint 2010
Administrators by Niklas Goude and Mattias Karlsson.

xvi PowerShel l for Microsoft SharePoint 2010 Administrators

Written in an easy-to-read manner, the book begins with a quick overview of the
new features of SharePoint 2010. The major new features are highlighted, and it is an
interesting read for someone who may not be familiar with SharePoint 2010. Next, the
book provides an introduction to Windows PowerShell in SharePoint 2010. If you are
already familiar with Windows PowerShell 2.0, the two chapters on SharePoint 2010
and Windows PowerShell 2.0 will be a quick but helpful read. If you are unfamiliar
with Windows PowerShell, the four remaining chapters in this section will be worth
careful perusal.

For me, the most exciting part of the book are the real-world solutions. This is where
the combined experience of the two authors really shines through. Beginning with a nice
chapter on scripted installations, these guys show you how to use the SharePoint 2010
cmdlets to quickly create reproducible and verifiable SharePoint installations. They
really pack the detail into the pages. Install the help files, install the services, the features,
the configuration database … it is all here in one easy-to-use chapter. This is just the
beginning. Working with SharePoint lists, document management, content databases … I
won’t spoil the plot, but I will tell you the outcome: a well-written, action-packed volume
that will quickly become one of your favorite SharePoint 2010 books.

Ed Wilson, MCSE, MCDBA, MCSD, MCT
Microsoft Scripting Guy
Author of Windows PowerShell 2.0 Best Practices, Microsoft Press

xvii

Acknowledgments

This book has been a tumbling journey with many long days and late nights
of writing, and wouldn’t have been possible without the help from people all
over the world.

First of all, we would like to thank Neil Salkind at Studio B and Göran Husman
who introduced us to the world of writing. Thanks to the group of people at
McGraw-Hill who believed in our idea, especially Roger Stewart and Joya
Anthony for their support and patience. We also want to thank Ed Wilson at
Microsoft Scripting Guys for helping us out. Thanks to our colleagues at Enfo
Zipper for their help and support, and especially to Erik Brügge for his support
and sincere interest in our project. Thanks to Dr. Tobias Weltner, Jeremy Thake,
Ravikanth Chaganti, Wictor Wilén, Jason Shirk, and Henrik Parkkinen for their
contribution. The SharePoint and PowerShell community also deserves a big
thank you for all your articles, blog posts, and twitter messages. You are all
brilliant, talented, and helpful people who made the writing so much easier.
Keep contributing—you are all heroes!

Finally, we want to give a very special thank you to a person who has worked
with us along the way. He has provided us with ideas and recommendations
that have improved the content and quality of the book significantly. Thank you,
Sergey Zelenov!

I want to thank my wife, Anna Goude, for her love, patience, support, and
understanding when I spent most of the nights of our vacation writing. I also
want to thank my parents for their love and support, and my family and friends.

–Niklas Goude

xviii PowerShel l for Microsoft SharePoint 2010 Administrators

I’d like to thank Niklas for not hesitating a second when the idea of writing
a book came up. It has been a pleasure working with you, and I have had a lot of fun.
Let’s do this again sometime.

I also want to thank my family and friends who have stood by me during these six
months, and especially my girlfriend Caroline for her tireless support and endless love.
This has been so much easier with you by my side.

–Mattias Karlsson

xix

Introduction

Welcome to PowerShell for Microsoft SharePoint 2010 Administrators. In SharePoint
2010, the use of Windows PowerShell has become fully integrated and is now
providing SharePoint administrators with a revolutionary set of tools that

will help automate and control their SharePoint 2010 environment. This book uses
a hands-on approach to guide you through the basics of Windows PowerShell
and demonstrates how to manage your SharePoint 2010 environment through
real-world scenarios.

This book is intended for technicians, administrators, and anyone interested
in using Windows PowerShell to automate the administration of SharePoint 2010.
The typical reader is an administrator familiar with the concept of scripting;
however, you do not need any prior knowledge of Windows PowerShell.

This book is organized into three parts:

Part I: An Introduction to SharePoint 2010 This part introduces the new, cool stuff in
SharePoint 2010, not only from an administrator perspective, but from a product
and end-user perspective as well. The first chapter gives you a holistic view of the
six capability areas of SharePoint 2010 and describes the enhancements made for
SharePoint administrators. Chapter 2 covers the different components of SharePoint
2010 to introduce the terminology you’ll encounter in the rest of the book.

Part II: An Introduction to PowerShell in SharePoint 2010 This part gives a detailed
tour through the Windows PowerShell language, including the syntax and built-
in cmdlets. Many of the examples focus on using Windows PowerShell through
a SharePoint 2010 administrator’s perspective. Chapter 3 introduces Windows
PowerShell and covers some of the fundamental features, such as cmdlets, pipelines,
and aliases. Chapter 4 covers the SharePoint 2010 cmdlets in detail, showing examples

xx PowerShel l for Microsoft SharePoint 2010 Administrators

on how to manage web applications, site collections, and more. Chapter 5 introduces
variables, arrays, and hashtables. Chapter 6 covers the use of operators. Chapter 7
begins with an introduction of flow control, demonstrating how to perform conditional
and looping statements, and also introduces object disposal. Chapter 8 covers the use
of functions and scripts and demonstrates how you can use Windows PowerShell
remotely.

Part III: SharePoint 2010 with PowerShell: Real-World Solutions The third part, Chapters 9 to
21, is purposely the majority of this book. Each chapter covers one or more real-world
solutions. We not only demonstrate how to solve common problems, but also explain
how and why things need to be done in the way demonstrated. You’ll find examples
that you can relate to and put into your own context. The chapters also outline additional
possibilities available using Central Administration, to show where tasks can be done
using Central Administration and when Windows PowerShell is needed.

Since this is a book on Windows PowerShell, it includes a lot of code examples and
scripts. Commands that are run interactively (as typed by the user) start with PS >
followed by a command. Any output produced by a command is displayed after the
command line. Here is a typical line of code:

PS > Get-SPSite -Identity http://nimaintra.net

Url

http://nimaintra.net

Some of the code examples span over multiple lines. These commands terminate
either with a pipeline or with a backtick (`), which is the line-continuation character in
Windows PowerShell. Subsequent lines will be preceded by >>, as shown here:

PS > Get-SPSite `

>> -Identity http://nimaintra.net |

>> Select-Object -Property Url

Url

http://nimaintra.net

Scripts and functions are written without any prefix.
Source code for all functions and scripts can be downloaded from

www.mhprofessional.com/computingdownload.
In some cases, this book includes links to sites with additional information on

a specific topic or sites where you can download tools or software. You can find a
complete list of the links used at www.sharepointandpowershell.com.

We would like to keep in touch with the readers and hear your thoughts about
this book. If you have any questions or comments, please visit www
.sharepointandpowershell.com. There, you can get news, updates, and tips and
find out how to contact us and share your feedback. You can also contact Niklas by
e-mail at niklas.goude@zipper.se and Mattias at mattias.karlsson@zipper.se.

PART I An Introduction to
SharePoint 2010

This page intentionally left blank

3

CHAPTER 1 Overview of SharePoint 2010

4 PowerShel l for Microsoft SharePoint 2010 Administrators

SharePoint 2010 is the business collaboration platform for the enterprise and
the Internet. By offering a rich set of capabilities and enhanced functionality,
SharePoint 2010 empowers users to connect, share, and work with information in

new and much more efficient ways. For businesses of all types, it provides out-of-the-box
solutions and tools to increase end users’ productivity through effective collaboration.
Tools are also available to streamline and enrich solutions, and to interact with other
systems to fulfill extended requirements and meet special needs of a business.

SharePoint 2010 offers scalability and flexibility to enable consolidation of business
solutions by integrating them into the SharePoint platform. This decreases maintenance
costs and the total cost of ownership (TCO), and at the same time allows administrators
and information technology (IT) departments to gain better control over the technical
platform and improve manageability.

This chapter provides an overview of SharePoint 2010, outlining its capabilities and
architectural components. This will not only set the context for the rest of the book, but
also give you a technical understanding of what makes SharePoint 2010 the collaboration
platform for the enterprise and the Internet.

Capability Areas of SharePoint 2010
SharePoint 2010 is not a single product, but rather a family of products and technologies.
SharePoint Foundation 2010 is pretty much what it sounds like—the foundation, or
enabling technology of SharePoint 2010. SharePoint Foundation 2010 includes a rich
set of web-based collaboration features like document libraries, blogs, wikis, and team
workspaces. SharePoint Server 2010 relies on SharePoint Foundation 2010 for its core
functionality. SharePoint Server complements SharePoint Foundation with a rich set of
features and capabilities, including those fit for full enterprise scenarios (in combination
with the Enterprise Client Access License). Some of the features and capabilities
described here are available only in SharePoint Server 2010.

SharePoint 2010 can be divided into six capability areas to better describe its versatile
nature and its strengths as a platform: Sites, Communities, Content, Search, Insights, and
Composites. In the following pages, we will briefly describe each of these six capability
areas to give you an understanding of its meaning and what possibilities it offers.

Sites

Composites

Insights

Search

Content

Communities

Microsoft
SharePoint

5Chapter 1: Overview of SharePoint 2010

Sites
With SharePoint 2010, the experience when working with sites has been significantly
improved compared to earlier versions of SharePoint. It offers support for a wider
range of browsers and mobile clients, as well as enhanced integration with Office 2010
desktop applications.

New User Interface
To give a uniform end-user experience, the familiar Office Ribbon, which was
introduced in the Microsoft Office 2007 application suite, has been implemented in
SharePoint 2010, as shown in Figure 1-1. The contextual Ribbon menu gives you easier
and faster access to the actions available in the context in which you are currently
working.

Figure 1-1. The familiar Office Ribbon user interface in SharePoint 2010

AJAX offers richer navigation and interaction. In-place editing significantly decreases
the amount of page reloads that need to be made each time something needs to be
updated.

In addition, the multilingual support has been improved. Along with allowing
different languages in navigation elements and menus within the same site, fields
within SharePoint lists can be configured to use different languages.

6 PowerShel l for Microsoft SharePoint 2010 Administrators

In Microsoft Office SharePoint Server 2007, we had support for Excel and InfoPath
through the Excel Calculation Services and Forms Services. In SharePoint 2010, these
services have been updated. Visio and Access services are also available as service
applications.

SharePoint Workspace 2010
The Microsoft Groove product that was introduced in the Office 2007 suite has been
enhanced and renamed to SharePoint Workspace 2010, which is now part of the
Microsoft Office 2010 suite. This application enables you to take SharePoint 2010 content
offline, including whole sites with custom lists and line-of-business data, as shown in
Figure 1-3.

Office Web Applications
The Office Web Applications feature enables Microsoft Office Word, PowerPoint, Excel,
and OneNote documents to not only be rendered in the browser, but also offers the
capability to edit the contents of documents without the locally installed client application.
Figure 1-2 shows an example of this feature used with a PowerPoint document.

Figure 1-2. Office Web Applications enabling PowerPoint in the browser

7Chapter 1: Overview of SharePoint 2010

Whenever you lose the connection to your SharePoint 2010 site, SharePoint
Workspace will start caching any changes you make. As soon as the connection is
restored, it uses a new intelligent synchronization mechanism to synchronize only the
changes, rather than whole files.

Communities
SharePoint 2010 offers new and enhanced tools and functions to foster collaboration
through social networking, making it easy for people to interact both within and across
organizational boundaries. The main purpose is to increase productivity by facilitating
sharing of information and knowledge. The time to find information and resources is
dramatically decreased by the use of these tools.

Figure 1-3. SharePoint Workspace 2010 enabling offline content

8 PowerShel l for Microsoft SharePoint 2010 Administrators

Social Networking and Feedback
Most people are familiar with blogs, rating of content, and status updates from Internet
applications, where these functions have been available for many years. SharePoint
2010 now offers this set of tools throughout the whole working experience. Users can
rate and tag information, bookmark content, view status updates, and stay connected
with colleagues through the activity feed that displays all relevant activities.

Collaboration
Together with the new user experience, SharePoint 2010 offers a “wikis everywhere”
approach that makes it much easier to quickly create and update content as the
information changes. This means that even team sites can be edited with live previews
and links to other pages, as shown in Figure 1-4. Most types of content—blogs,
calendars, task lists, contacts, and so on—have been improved to strengthen the
collaboration and make it easier to work with the information.

Figure 1-4. Editing content with the wiki approach

9Chapter 1: Overview of SharePoint 2010

Content
SharePoint 2010 takes document, record, and web content management to a new
level by offering a robust enterprise content management (ECM) platform with tools
to support the whole content life cycle, from creation to disposition. The new and
improved features enable more people to participate in the ECM process and provide a
much more controlled content management solution.

Large List Repositories
A lot of improvements have been made to lists and libraries in SharePoint 2010 to
allow them to support tens of millions of items. Metadata-driven navigation, as shown

My Sites and User Profiles
The new enhanced My Site acts as the hub in the new social networking experience
within SharePoint 2010, as shown in Figure 1-5. From here, you can keep track of
your social network in the organization and follow your news feed. Together with the
updated user profile, the site focuses on your expertise and skills. This makes it easier
for people within large companies to find the resources and information they need.

Figure 1-5. My Site

10 PowerShel l for Microsoft SharePoint 2010 Administrators

in Figure 1-6, allows you to quickly locate the content you are looking for, no matter
how many items a list or document library actually contains.

SharePoint 2010 can be configured to assign each document with a unique
document ID. This enables users to find a specific document within a site collection
using a special URL, even if the sites have been restructured or the document library
has been moved.

Figure 1-6. Metadata-driven navigation

Metadata for the Enterprise
Metadata is now everywhere. It is possible to build enterprise taxonomy structures
(as shown in Figure 1-7) that can be used not only within sites, but also throughout the
whole environment or even between farms. The taxonomy structure can then easily
be added to a list or library, and with autocomplete, metadata tagging for the end user
is much easier than in previous versions. End users can also automatically extract
metadata from new content.

Social tagging, also known as folksonomy, adds a new dimension to metadata, as it
combines the controlled metadata with the unmanaged metadata tagging. Together,
they help improve the search experience, making it easier to find the desired content in
less time.

11Chapter 1: Overview of SharePoint 2010

Web Content Management
A number of improvements have been made to encourage the use of SharePoint 2010 as
a web content management platform for Internet and intranet sites. This is suitable for
scenarios where most users are content consumers, rather than active contributors.

By introducing the Office Ribbon and minimizing the amount of page reloads when
editing content, the experience for content owners has been significantly improved.

In addition, SharePoint 2010 now offers better support for rich media, such as
images and videos. A built-in media asset library supports thumbnails, rating, and
searching. An integrated media player enables streaming of video files directly from
the browser.

Search
Whether or not you choose to use the built-in SharePoint Server 2010 Search tool or
add the more complex Fast Search Server 2010 for SharePoint, you will see that a lot of
effort has been made to improve the search capabilities. Everything from the end-user
search experience to the flexibility and scaling at the back end has been completely
remade, making it much easier to find the content you’re seeking.

Figure 1-7. Managed metadata

12 PowerShel l for Microsoft SharePoint 2010 Administrators

Improved Search Experience
SharePoint 2010 now offers faceted search—an easy way to refine a search query by
using a navigator panel built from the metadata extracted from actual search results,
as shown in Figure 1-8. You can drill down to the information you are looking for by
refining the results by any metadata element, such as content author, last modified
date, or type of content (document, presentation, web page, and so on).

Figure 1-8. Search result in SharePoint 2010

When you type your search query, suggestions (showing what others have searched
for before) come up as you type. In addition, wildcard search and spell checks are now
out-of-the-box features. Improved search relevance includes usage and social tagging
in its calculations.

People Search
Significant updates have been made to the People Search function, to make it easier
than ever before to find people and stay in touch with colleagues. By default, a person’s

13Chapter 1: Overview of SharePoint 2010

expertise and participation in social networks are included in the search result. Another
improvement is the ability to spell-check names and suggest variations for the name
you are searching for.

Search Outside SharePoint
In a real-world enterprise environment, information is spread out across a wide
range of different systems and line-of-business applications. In SharePoint 2010, it has
become much easier to connect to these systems and applications in order to index this
information and make it searchable from within SharePoint. With SharePoint Designer
and the new Business Connectivity Services, these connections can often be made
without writing a single line of code.

Insights
The Insights area in SharePoint 2010 is all about empowering users with business
intelligence—not just a selected group of people armed with custom tools, but
everyone within the organization. SharePoint 2010 offers a wide range of tools to
analyze information from both structured and unstructured sources, and present it in
a way that makes important business decisions easier.

PerformancePoint Services
What used to be available as a separate product (PerformancePoint Server 2007) is
now fully integrated into the Enterprise Edition of SharePoint Server 2010 as a service
application. This means that it uses the same security model, and its repository now
consists solely of SharePoint document libraries and lists. In addition, a migration tool
is available to move existing content from the previous version into the new repository.
Enhancements have been made to objects such as key performance indicators,
scorecards, and dashboards.

Visio Services
With SharePoint 2010, you are able to view Visio web diagrams directly in the browser
using the new Visio Services. The diagrams are rendered in Silverlight or as image
(PNG) files, making it easy to embed and share them in SharePoint 2010 pages. It is also
possible to create and display data-connected diagrams, dynamically visualizing data
from various sources.

Excel Services
Excel Services technology was first available in Microsoft Office SharePoint Server 2007
as a shared service that made it possible to work with Excel workbooks using only a
browser. In SharePoint 2010, its capabilities have been improved with richer pivoting
and slicing, and much better visualization.

Previously, an Excel workbook could not be loaded if it contained a feature that was
unsupported by Excel Services, such as a Microsoft Visual Basic for Applications (VBA)
macro. Now only the unsupported feature (like the macro) will be ignored, and the
workbook will load.

14 PowerShel l for Microsoft SharePoint 2010 Administrators

Composites
One of the biggest efforts in improving SharePoint 2010 over its predecessors has been
made in the area that Microsoft calls Composites. Composites is all about making it
easy for business users to rapidly create SharePoint solutions tailored for a specific
need or requirement. This is achieved by empowering them with a wide range of tools
and building blocks, while at the same time giving the IT staff maximum control and
the ability to isolate solutions to maintain stability in the environment.

Line-of-Business Data Connections
With the new Business Connectivity Services, previously known as Business Data
Catalog (BDC), SharePoint 2010 offers an easier way to connect to line-of-business
applications. You are now able to search, read, edit, create, and delete line-of-business
data from within SharePoint, instead of having read-only access to the data, as was the
case with BDC.

Connections can now be made from SharePoint Designer 2010 without any coding.
This is a huge step forward when it comes to offering nontechnical information
workers the ability to rapidly build customized SharePoint solutions in response to
emerging business requirements.

SharePoint Designer 2010
SharePoint Designer 2010 has received more than just a facelift that enriches the
user experience with features such as the Office Ribbon. It also offers better tools for
managing site content, creating workflows, and connecting to external data.

SharePoint Designer has been a good tool for customizing SharePoint sites, but it
was difficult for IT personnel to control modifications that could sometimes lead to
serious performance implications. With SharePoint 2010, the IT staff is able to control
the use of SharePoint Designer 2010 by locking out specific capabilities or restricting
use to only specific sites within a SharePoint 2010 environment.

Sandboxed Solutions
Even though SharePoint 2010 offers a rich set of tools to create custom SharePoint
solutions without needing to write any code, some coding may be required in order
to meet specific business needs. However, if custom code is poorly written, it can be
a threat to the overall performance and stability of your SharePoint environment. To
address this issue, SharePoint 2010 introduces a new feature called sandboxed solutions.

Sandboxed solutions allow site collection administrators to deploy custom
elements such as Web parts or event receivers within the context of their respective
site collections. Such isolated solutions run with partial trust and do not have full
access to the SharePoint object model. IT staff can limit the amount of resources that
these solutions are allowed to consume in terms of CPU time, memory, and number
of database queries. SharePoint disables the solution once the quota value has been
reached, and prevents it from running again until action is taken.

15Chapter 1: Overview of SharePoint 2010

Improvements for Administrators in SharePoint 2010
SharePoint 2010’s advantages of flexibility and scalability also make it very
comprehensive, and therefore complex to manage. To provide information workers
with a stable platform, a lot of pressure is put on the infrastructure side of things,
which is where we believe most of you work (as we do).

Fortunately, SharePoint 2010 does not only come with a lot of new exciting end-user
features, but also includes many additions and enhancements for administrators. Here,
we will summarize the improvements in SharePoint 2010 from an IT professional’s
perspective.

Flexible Deployments
A lot of effort has been put into making new deployments and upgrades to SharePoint
2010 easier and more manageable. One of the nicest features when performing the
actual installation is the new prerequisites installer, which checks whether all software
prerequisites are present in the system and will automatically download and install any
that are missing.

When the installation of all prerequisites is done, you have the option to install
SharePoint either by means of a step-by-step wizard with a graphical user interface or
through a scripted installation using configuration files and PowerShell.

NOTE Using scripted installations is preferred, because this could also act as part of your disaster
recovery plan. In case of a disaster. a server or the entire farm could easily be set up exactly as it
was before. In addition, it can also be advantageous when installing different staging environments
to make sure that your test, quality assurance, and production environments look the same.

Pre-Upgrade Checker
In Service Pack 2 for Microsoft Office SharePoint Server 2007 and Windows
SharePoint Services 3.0, a new STSADM operation was introduced for the first
time. The preupgradecheck operation is a tool that you run in your SharePoint
Server 2007 or Windows SharePoint Services (WSS) 3.0 farm to generate an HTML
report showing the state of your farm and the presence of any issues that need to be
resolved before your environment is ready to be upgraded to SharePoint 2010.

Visual Upgrade
When upgrading from a previous version of SharePoint to SharePoint 2010, you have
the option to keep the WSS 3.0 look and feel to minimize the initial impact on your end
users. You are then able to switch on a per-site basis to the SharePoint 2010 preview
mode to verify the content and looks of your site. Finally, you complete the upgrade by
changing to the new SharePoint 2010 user experience, as shown in Figure 1-9.

16 PowerShel l for Microsoft SharePoint 2010 Administrators

Managed Accounts
Managed accounts were introduced in SharePoint 2010 as a mechanism for keeping a
centralized record of all service accounts. This feature will automatically change service
account passwords according to domain policies, without requiring any administrator
interaction or causing any downtime. It is also possible to be notified when a password
is about to expire, if you prefer to control this process yourself. This should mitigate the
risk of an outage due to expired passwords, and at the same time reduce administrative
overload related to keeping track of service accounts and their expiration time.

Another highly acclaimed addition is the ability to use a Group Policy Object
(GPO) to control on which servers SharePoint 2010 is allowed to be installed. This lets
administrators prevent unapproved SharePoint installations and adhere to governance
plans.

SharePoint 2010 Patching
A lot of enhancements have been made to improve the patching process of SharePoint
2010 to reduce downtime and provide better control over the patch level of your farm.
With the new patch management user interface, administrators are able to get a view
of each server’s patch level and the status of the entire farm. A patch status health rule

Figure 1-9. Changing the site to the new SharePoint 2010 user experience.

17Chapter 1: Overview of SharePoint 2010

that is part of the new built-in monitoring infrastructure will inform administrators of
any inconsistencies.

In addition, SharePoint 2010 offers a backward-compatibility mode, allowing
administrators to apply the binaries of a patch to a front-end server but postpone
changing the schema of the databases. This enables your SharePoint farm to run
with different versions of binaries and database schema, and potentially reduces the
downtime, as you can plan the upgrade in a much more controlled way. You also have
the ability to reduce downtime even more by using the option to set databases to read-
only, so users can access the data in read-only mode, or by using parallel upgrading of
databases, which speeds up the process.

Productivity
To increase the productivity for administrators, the whole experience has been
improved, including Central Administration, which now has the familiar Office
Ribbon. New tools have been implemented to make monitoring of SharePoint farms
much easier. And with the SharePoint Best Practices Analyzer, you can check the
configuration and security settings of your farm, get recommendations, and in many
cases, get help in resolving the issues within the same user interface.

Backup and Restore
Anyone who has been involved with backup and restore procedures in a SharePoint
Server 2007 or WSS 3.0 environment knows that quite a few steps were required for
recovery using just the out-of-the-box tools. You needed to restore a copy of the affected
content database from a backup, attach it to a separate farm with the same patch level,
export the site using STSADM, copy the export package onto a production server, and
then import the site using STSADM again. Quite a time-consuming task!

In SharePoint 2010, the backup and restore procedure have been significantly
improved by allowing content databases to be “mounted” to the farm, without actually
being attached to any of the Web applications. This is referred to as an unattached
content database, the contents of which can be browsed and exported down to list level.
Using PowerShell, you can then restore the exported content back into one of the
attached databases.

In Chapter 21, we will talk more about backup and restore in SharePoint 2010,
including additional options available with Windows PowerShell.

Unified Logging
In SharePoint 2010, troubleshooting and finding root causes of problems in log files
have become much easier thanks to the new logging database. Unified Logging Service
(ULS) logs, Windows events, page requests, and so on are stored in an open schema
database, so you can extract and work with the data in a much more efficient way. A
number of predefined SQL views are available. And since the database has an open
schema, it is possible to create new tools or use third-party tools to get views that better
suit your needs.

18 PowerShel l for Microsoft SharePoint 2010 Administrators

Developer Dashboard
The Developer Dashboard, shown in Figure 1-10, is a per-page detailed report of
latency across the SharePoint, ASP.NET, and SQL Srever layers. This makes it much
easier to determine which components of a SharePoint page cause it to not perform as
well as it should.

Figure 1-10. Developer Dashboard

PowerShell Cmdlets
As you will learn in this book, PowerShell is a huge asset to IT professionals managing
SharePoint 2010 products. For now, we will just say that PowerShell is fully integrated
into SharePoint 2010, with a huge number of predefined cmdlets.

Unified Infrastructure
The new unified infrastructure of SharePoint 2010 is now more scalable than ever before,
increasing the performance and manageability of the environment, and empowering
administrators to act proactively to maintain a stable SharePoint 2010 farm.

19Chapter 1: Overview of SharePoint 2010

Shared Service Architecture
The new Shared Service architecture introduced in SharePoint 2010 allows a more
flexible and scalable deployment of shared services. Shared services are now part of
SharePoint Foundation 2010 and are also extensible, allowing third-party vendors to
build services that can easily be deployed into a SharePoint 2010 farm. In addition, the
new architecture allows sharing of services not only between Web applications, but also
between farms.

Controlling Performance
SharePoint 2010 introduces new ways to control performance and protect server
resources during peak hours. This is achieved by allowing administrators to configure
threshold values per Web application. Then when the value of the relevant counter
(such as CPU Time, Available Memory, or Requests in Queue) reaches the configured
value, SharePoint can enter a throttling health state, denying new requests and
preventing new timer jobs from running, to protect the SharePoint server.

Claims-Based Authentication
Claims-based authentication is a new flexible token-based authentication model. Its
main principle is that a user can be authenticated by providing a minimum possible set
of personal information (claims), as long as the target system trusts the authentication
authority that can validate this information. Microsoft’s implementation of this model
is built on the Windows Identity Foundation framework, and it allows SharePoint Web
applications to authenticate users with a variety of authentication methods, including
Lightweight Directory Access Protocol (LDAP), relational databases, Active Directory
Federation Services (ADFS), Windows Live ID, and different third-party providers.

An important aspect of claims-based authentication is that, in many scenarios,
it provides an opportunity to personalize user experience based on the information
contained in a user’s token.

Multi-Tenancy
Multi-tenancy is a feature of SharePoint 2010 that makes it possible to isolate and secure
service application resources between SharePoint sites. Service application data can be
partitioned to allow different subsets of data to be accessible depending on each site’s
tenancy. This is managed by administrators assigning each tenant a subscription ID.
This feature is ideal for hosting environments.

System Requirements
Table 1-1 lists the minimum hardware requirements for running SharePoint 2010 (and
the minimum requirements to run the code examples provided in this book).

20 PowerShel l for Microsoft SharePoint 2010 Administrators

For a database server used in a farm, either of the following Microsoft SQL Server
editions is required for SharePoint 2010:

 64-bit edition of SQL Server 2005 with Service Pack 3 (SP3) with Cumulative
Update 3

 64-bit edition of SQL Server 2008 with SP1 and Cumulative Update 2

The following are the minimum software requirements for a single server with a
built-in database, web front end (WFE) server, or application server used in a farm:

 64-bit edition of Windows Server 2008 Standard, Enterprise, Data Center, or
Web Server with SP2

 Web Server (IIS) role

 Application Server role

 Microsoft .NET Framework version 3.5 SP1

 SQL Server 2008 Express with SP1

 Windows Identity Foundation (WIF)

 Microsoft Sync Framework Runtime v1.0 (x64)

 Microsoft Filter Pack 2.0

 Microsoft Chart Controls for the Microsoft .NET Framework 3.5

 Windows PowerShell 2.0

 SQL Server 2008 Native Client

 Microsoft SQL Server 2008 Analysis Services ADOMD.NET

 ADO.NET Data Services v1.5 CTP2

Component Minimum Requirement

Processor 64-bit, four cores

RAM 4GB for developer or evaluation use
8GB for single server and multiple server farm installation for
production use

Hard disk 80GB for installation

Table 1-1. SharePoint 2010 Hardware Requirements

21Chapter 1: Overview of SharePoint 2010

Architectural Components
SharePoint 2010 consists of the following architectural components:

 Server farm

 Service applications

 Application pools

 Web applications

 Content databases

 Site collections

 Sites

 My Site site

Here, we will provide a very high-level overview of these components and how
they work together. We will highlight what is new to SharePoint 2010.

NOTE For a more in-depth discussion of the architectural components, we suggest that you
review the number of available articles on Microsoft TechNet.

Server Farm
A server farm could be considered as the top-level element in a SharePoint implementation.
It consists of one or many servers. When utilizing more than one server in a farm,
SharePoint offers the flexibility to scale out each individual SharePoint Server role onto
new dedicated servers, or simply move the services around on the already existing servers
in your farm. This flexibility makes it easy to optimize the performance or align with new
business requirements as your implementation grows over time.

Whether you have one or many servers in your farm, all the SharePoint 2010
services are bound together by a single configuration database in your SQL Server
implementation.

22 PowerShel l for Microsoft SharePoint 2010 Administrators

Service Applications
The SharePoint 2010 products family has a new and more scalable service model than
in Office SharePoint Server 2007. Shared Services is now a part of Microsoft SharePoint
Foundation 2010, instead of SharePoint Server 2010, as in the previous version of the
platform.

Instead of having a Shared Service Provider that provides all services available
(Search Services, Forms Services, Excel Services, and so on) to the associated Web
applications, you now have the ability to group and share service applications in a
much more flexible way. This means that you can associate a specific set of service
applications with one Web application and a different set of service applications with
another Web application. If you need to have one service application used among all or
many Web applications, that can be set up as well.

By publishing a service application, it is possible to share the service application
so that other SharePoint 2010 farms can consume the actual service data from the
service application and use it in the local farm. This kind of setup can be very useful in
scenarios where you have a number of different farms within your company, but still
want to use one common search service.

In addition to sharing a service application between Web applications, it is also
possible to partition the actual service data. For instance, if you have a Search Service
application used by two different Web applications, the search result, representing
the service data in this case, would be different depending on the origin of the search
request. This could be very useful in hosted environments and is called partitioning.

NOTE Not all service applications have the capability of partitioning. Some service applications
can be shared only within a single server farm.

Application Pools
Application pools can be seen as virtual containers, in which one or a group of Internet
Information Services (IIS) web sites are running isolated from each other, with their
own worker process (or processes).

Each time you create a new Web application from Central Administration,
SharePoint will allow you to create a new application pool. All Web applications and
service applications can have their own application pool for isolation, but you also can
share application pools between Web applications and service applications if needed.

NOTE In the design phase of your implementation, you should plan for application pools and how
to consolidate and isolate your Web applications. Since each SharePoint environment is unique,
it’s difficult to give a general rule or guidance in how or when you should consolidate or isolate.
However, if you have Web applications with a lot of homegrown custom code, you should probably
think of isolating those within their own application pools to mitigate the risk of security flaws or
memory leaks bringing down your entire SharePoint environment.

23Chapter 1: Overview of SharePoint 2010

Web Applications
A Web application is a configuration object defined by SharePoint and mapped onto one
or more IIS virtual servers. They are created from Central Administration or by script,
through STSADM or PowerShell. (Chapter 10 discusses managing Web applications
with PowerShell.)

With SharePoint 2010, we still have, as in its predecessor, the possibility to extend
each Web application up to four times. Each time you extend a Web application, a new
IIS Web site is created, and the Web application will be associated with a new zone.
All zones, and thereby the corresponding virtual servers, are always pointing to the
Web application that was originally created. This gives you the option to have different
security settings, and even a different look and feel, for the same content, since you are
able to use different authentication providers in different zones.

NOTE Zones are a way to have different logical paths to access the same Web application. For
example, you may use zones in an intranet/extranet scenario, where you want to use Windows
Integrated security when working on the company network and Forms-based authentication when
accessing the content from the Internet.

In addition to being able to use different authentication providers in your zones,
you also have the option to set a security policy for the Web application. You can then
allow or deny security rights for specific users or groups, depending on from which
zone they are accessing the Web application. For example, you might want to allow a
service account like the crawl account to have access to all content, or you may want
to limit the access for partners or vendors accessing your Web application through the
extranet zone. A policy for Web applications overrules all security settings at the site
collection level.

Content Databases
Content databases are where all content for a Web application is stored. Each Web
application can have multiple content databases to be able to provide scalability when
the amount of content increases. When you first create a Web application, you will
need to specify a content database to use. If the content database does not exist in the
specified database server, SharePoint will create a content database for you. Content
databases can then be managed from Central Administration, as shown in Figure 1-11,
or by using PowerShell.

24 PowerShel l for Microsoft SharePoint 2010 Administrators

When creating new content databases, you will need to specify how many sites
should be allowed in the database and at what number of sites the warning level
should be. You can have different content databases located on different SQL Server
servers. This could be applicable in environments where you have a different service
level agreement (SLA) for some sites and the requirement for the recovery time
objective (RTO) makes it necessary to put content databases on a different SQL Server
instance where you have more frequent backups and faster recovery tools.

When using SharePoint 2010 to store large binary files, you should consider using the
new Remote Blob Storage (RBS) feature to minimize the size of your content databases.
With RBS, you are able to store files outside your content databases, on local disks
attached to the SQL Server server. For end users, there is no difference in how they work
and interact with their files, as this will be handled automatically in the back end. In
Chapter 20, we will look more at how to manage content databases and setting up RBS.

Figure 1-11. Content database management in Central Administration

25Chapter 1: Overview of SharePoint 2010

Site Collections
Site collections are collections of SharePoint sites. Each site collection has a top-level
root site and can contain a hierarchy of subsites. Site collections are stored in a content
database, and you can have thousands of site collections in each content database. You can
control this amount using the threshold values at the content database level. SharePoint
will then automatically create the next site collection in a new content database.

Site collections also enable sharing of items like master pages, page layouts, site
templates, and so on. It’s also common to use the same navigation and permissions
throughout an entire site collection.

Site collections are usually created from Central Administration, as shown in
Figure 1-12, but can also be scripted with PowerShell. When creating new site
collections, you will need to assign a primary site collection administrator. This is

Figure 1-12. Creating a site collection from Central Administration

26 PowerShel l for Microsoft SharePoint 2010 Administrators

the highest security role within the site collection and allows the user to manage
settings like search, site hierarchy, content type publishing, features, and site collection
policies. Chapter 11 discusses creating and managing site collections using PowerShell.

Sites
A site is hosted within a site collection and contains one or more web pages, lists, or
libraries to store and present information. All sites are built on site templates. A number
of predefined site templates are shipped with SharePoint 2010. As shown in Figure 1-13,
the templates are designed to serve different purposes, such as for publishing sites,
document centers, meeting workspaces, and team sites.

Figure 1-13. Templates for creating a new site

You can also create custom site templates from scratch using tools like Microsoft
Visual Studio 2010, or by using an existing template that you have customized and then
saved as a template.

When it comes to security, sites can either inherit permissions from the above site or
use unique permissions. In the latter case, you can grant users or groups permissions to
the site directly, or you can create unique SharePoint groups for your users and groups.
By doing this, you get better control of the permissions set on the site.

In SharePoint 2007, it was quite difficult to get a good view of which users actually
had access to a site or what permission level they had, especially if you used unique

27Chapter 1: Overview of SharePoint 2010

permissions on different site levels and used Active Directory groups, either directly on
the site or added through SharePoint groups. To verify that a user had access to a site,
you needed to look in each Active Directory group you had added to the site. This way
of working is now gone.

In SharePoint 2010, you have a Check Permissions tool, as shown in Figure 1-14,
which is easily accessible from the Site Permissions tool. Here, you can enter the user
ID to see a list of the permissions the user has on the site and how those permissions
are set—directly through SharePoint groups or through an Active Directory group.

Figure 1-14. Checking permissions

Lists and Libraries
Lists and libraries are where you store your data in SharePoint, as shown in Figure 1-15.
It’s important to know that libraries are actually lists as well, but customized in a way so
that they are better suited for storing files.

28 PowerShel l for Microsoft SharePoint 2010 Administrators

Many types of lists and libraries are already available in SharePoint out of the box.
They can be used as they are or as a starting point to tailor them to fulfill your specific
business requirements. Lists have a set of configurable settings that apply to all lists, as
well as custom settings that apply only to the specific type of list used.

Among the many SharePoint 2010 improvements and new features for lists and
libraries are ratings of documents and information, form validation settings, and the
possibility to reuse custom list views so that you don’t need to re-create your custom
list view in all your document libraries.

Items
Items are always stored within a list or library and can be of any type: a document in a
document library, a calendar booking in a calendar list, or simply an entry in a custom
list. In SharePoint 2010, you can have as many as 50 million items in each list. When
you have a large amount of items, you will need to be sure that it does not affect the
performance of your environment. To support this, SharePoint 2010 has the ability to
set limitations and rules for how large lists should be handled. We will cover how you
can control your large lists in Chapter 2.

Figure 1-15. Document library with the new Ribbon interface

29Chapter 1: Overview of SharePoint 2010

Web Parts
Web parts can be seen as small reusable applications presented on pages in sites. They
are often used for a specific purpose, like displaying the content of a list or library.
They can also be connected and used when filtering data in one Web part by selecting
another type of data in another Web part.

To give you a better understanding of what role Web parts play in SharePoint, it
is fair to say that most of the content displayed when using SharePoint is presented
through Web parts—everything from announcements to search results.

My Sites
My Site (available only in Microsoft SharePoint Server 2010) is a special type of
SharePoint site that is customizable for each user. It enables the users to customize the
site for their own needs, and to create a profile specifying things like contact details,
profile picture, colleagues, and memberships. The user profile is controlled by the user
and exposes that user’s details to colleagues. At the same time, the My Site web site
offers a secure place to store files, lists, and libraries accessible only by the user or the
persons who have been granted access.

SharePoint 2010 has taken a huge step toward social networking, and therefore the
My Site feature has been dramatically improved. New concepts like status updates,
activity feeds, and note boards—all well-known concepts from social networking
applications—have been introduced.

As mentioned when discussing lists and libraries, rating of content is now included
in SharePoint 2010 products. Together with social tagging and feedback, users can more
easily discover new content that might be relevant to them by reviewing what others
think of the content.

With the Knowledge Mining feature, users are able to add keywords and tags of
what they are interested in, or subjects they can or are willing to answer questions
about. To support users with the process of adding keywords, it’s possible to extract
keywords from the users’ Outlook 2010 mailboxes when editing the user profile.

Summary
In this chapter, we have gone through the six capability areas (Sites, Community,
Content, Search, Insights, and Composites) of SharePoint 2010 and highlighted some of
the new features to give you an idea of the endless possibilities that the platform offers.
We have also introduced you to the enhanced functionalities and tools that can be used
by administrators to get better control, reduce downtime, increase productivity, and
provide end users with a stable and highly available SharePoint environment.

In addition, we briefly explained the architectural components of the SharePoint
2010 products family to set the terminology for the coming chapters. It’s important to
at least have a holistic view of the components, as they come up frequently used in Part
III of this book.

In the next chapter, we will take a look at the options and tools administrators have
to manage SharePoint 2010.

This page intentionally left blank

31

CHAPTER 2 Managing SharePoint 2010

32 PowerShel l for Microsoft SharePoint 2010 Administrators

In this chapter, we will briefly walk through the options administrators have when
it comes to managing SharePoint 2010. Those of you who have worked with
SharePoint products will recognize many of these tools, but you will notice that a

lot of effort has been put into improving them. Administrators now have more options
to better control and manage their SharePoint 2010 environment.

Central Administration
In SharePoint 2010 Central Administration, an administrator of a SharePoint farm or a
specific service can manage, configure, and monitor SharePoint 2010 and its components.
Central Administration in SharePoint 2010 has been enriched with new and enhanced
features. All tasks available in Central Administration are now grouped into functional
areas, instead of being divided into Operations and Application Management categories,
as in the previous version of SharePoint. The Central Administration Home page displays
these groups with links to common tasks, as shown in Figure 2-1. By clicking a link or
using the navigation panel on the left side of the page, you can access the items available
within each functional group.

Figure 2-1. SharePoint 2010 Central Administration

33Chapter 2: Managing SharePoint 2010

Like other SharePoint 2010 sites, Central Administration makes full use of the Ribbon,
providing quick access to all the currently available actions through a set of graphic
contextual menus.

Besides the facelift of the user interface, there are a lot of other innovations in
Central Administration. Here, we will highlight a few of these enhanced features.

Web Applications Management
The Web Applications Management page in Central Administration, shown in Figure 2-2,
is a good example of how the Ribbon makes working with Web applications much easier,
as it consolidates all related tasks for easy access from one single view.

Figure 2-2. Managing Web applications through Central Administration

SharePoint 2010 offers a couple of new configurable items at the Web application
level, giving you much more control over the content and performance of your Web
applications. This includes the ability to set whether SharePoint Designer 2010 is
allowed to be used against the sites in each Web application. In addition, you can
restrict some of the SharePoint Designer 2010 functions; for example, you can specify
that users are not allowed to modify master pages.

As mentioned in the previous chapter, large SharePoint lists (those with more than
2,000 items) potentially have serious performance implications. Although SharePoint

34 PowerShel l for Microsoft SharePoint 2010 Administrators

is perfectly capable of maintaining lists with millions of items, trying to return more
than 2,000 in a single query is a very resource-intensive operation. The most common
example of this is rendering a default view of a list or document library. This could, in
some cases, even affect the performance and stability of the whole farm.

To mitigate the risk of performance issues caused by large lists, SharePoint 2010
introduces a way to centrally control how these lists are handled. For each Web
application, you can set rules and limitations on the queries allowed against lists. As
shown in Figure 2-3, the default value for the amount of items returned in a query
performed by a user is set to 5,000.

Figure 2-3. Resource Throttling settings in Central Administration

35Chapter 2: Managing SharePoint 2010

Other configurable items include the number of lookup fields that are allowed in
a single query and the amount of unique permissions that a list can have at the same
time. In addition, you can specify a time window when larger list queries are allowed
for end users. If you use this kind of “happy hour,” you should set this time to be
outside normal business hours so the queries do not affect the overall performance of
your SharePoint 2010 farm.

On the same page where you configure the threshold values for list queries, you are
also able to turn HTTP request monitoring and throttling on or off. This provides a way to
control requests and protect the SharePoint 2010 environment during peak loads. When
HTTP request monitoring and throttling are enabled, a timer job monitors the front-end
web servers, and if there is a request overload, low-priority tasks are put on hold.

NOTE From Central Administration, HTTP request monitoring can only be turned on or off. To
change the settings, you need to use PowerShell.

Service Application Management
Management of service applications is now done from Central Administration or through
PowerShell, instead of a separate administration site as it was in Office SharePoint
Server 2007 with its Shared Service Provider infrastructure. Figure 2-4 shows the Manage

Figure 2-4. Managing service applications through Central Administration

36 PowerShel l for Microsoft SharePoint 2010 Administrators

Service Applications page. To access the settings page for a particular service application,
click its name in the list.

Each service application can have its own set of administrators, which is configurable
using the Administrators button in the Ribbon on the Manage Service Applications page.
This provides a new level of flexibility when it comes to granular delegation of control
over various service applications.

As noted in Chapter 1, the SharePoint 2010 service application architecture is
extremely flexible. You can have different sets of service applications for different Web
applications and also share service applications between Web applications or even
between farms. When sharing service applications between Web applications, the
actual service application data can be partitioned, so that search results from different
Web applications are separated from each other, for instance.

Each service application has its own application proxy, which is a logical object
(a Windows Communication Foundation web service) used by the consumer of the
service (a Web application or its component) for connecting to the service application.
Proxies can be grouped into different proxy groups to make it easier to manage
different sets of service applications. Managing new proxy groups can be done only
with PowerShell cmdlets, and the same goes for managing site subscriptions, which are
used for partitioning service data to separate it between site collections.

In Chapter 18, we will discuss how to manage service applications.
SharePoint 2010 also offers the option to isolate service applications by using

different application pools. To change the properties of a service application select
the service application in the Manage Service Applications list and click Properties in
the Ribbon. The Service Application Properties page contains options for changing
application pool or creating a new one, as shown in Figure 2-5.

Health and Monitoring
In the Monitoring section of Central Administration, you can find the SharePoint
Health Analyzer. The Health Analyzer is a new feature that periodically or on
demand checks for potential configuration and performance problems within your
farm by matching the configuration against a set of health rules. SharePoint 2010
provides a number of predefined health rules, and you can also create custom health
rules to extend the monitoring capabilities or to monitor custom solutions built on
SharePoint products.

When problems are identified, they are shown in the Central Administration
console. A status report describes the problems in more depth and tells you what
actions are required to resolve them, as shown in the example in Figure 2-6. In some
cases, the problems are fixed automatically or you can resolve the problem directly
from within the status report.

Also available in the Monitoring section is the enhanced diagnostics logging
configuration page. Here, you’ll find all the configurable logging categories broken

37Chapter 2: Managing SharePoint 2010

down into subcategories in a much more detailed view than in previous versions.
Each of the logging categories can be configured either individually or by inheriting
settings from the parent category, as shown in Figure 2-7.

In addition, SharePoint 2010 introduces something called event log flood protection.
This detects repeating log events and suppresses them until the problem is fixed or
conditions return to normal. This helps administrators reviewing the application event
log, as it will not be flooded with multiple iterations of the same event.

In SharePoint 2010, you not only have the option to set the number of days the trace
log files should be retained, but you can also specify the maximum amount of disk
space the log files can use. SharePoint will restrict the log files from growing larger
than the configured value.

Figure 2-5. Configuring a service application to use an application pool

38 PowerShel l for Microsoft SharePoint 2010 Administrators

NOTE SharePoint 2010 uses NTFS file system compression to reduce the size of trace log files
by more than 50%.

Another improvement made in SharePoint 2010 that will significantly help
administrators with troubleshooting is the use of correlation IDs. Each request in
SharePoint is associated with a correlation ID that will follow the request all the way
down to the database layer and back. This makes it much easier to track down the root
cause of a problem. In addition, a correlation ID is shown in the browser whenever a
error is raised, so that administrators can actually find the specific request that caused
the problem for the end user.

With the Usage and Health Data Collection service application that is provisioned
and started by default, SharePoint 2010 can log useful information about page requests,

Figure 2-6. SharePoint Health Analyzer report

39Chapter 2: Managing SharePoint 2010

search query usage, feature usage, and so on. Figure 2-8 shows an example of a built-
in web analytics report. The data is stored in a special logging database that has an
open schema, so third-party vendors can build additional reports to complement those
supplied with SharePoint.

TIP Even though there have been a lot of improvements made to the trace logging feature of
SharePoint, troubleshooting can still be difficult. ULSViewer is a free tool that provides a user-friendly
way to view log files. It also offers advanced features like sorting, filtering, highlighting, and appending
logs to make troubleshooting much easier. You find the tool at http://code.msdn.microsoft.com/
ULSViewer.

Figure 2-7. Configuring diagnostics logging

40 PowerShel l for Microsoft SharePoint 2010 Administrators

Backup and Restore
As noted in Chapter 1, backup of SharePoint content has been significantly improved
in SharePoint 2010. With the new concept of unattached content databases, you are able
to connect a content database to the farm without having it attached to a specific Web
application. This makes it possible to browse the content database through all the site
collections, all the way down to the list level, and export data to a .bak (site collections)
or .cmp (sites and lists) file. The exported file can be imported into a Web application
or site through a simple PowerShell cmdlet. (It is also possible to export a site or list
directly from a “live” environment using the same PowerShell cmdlets.)

Figure 2-8. A web analytics report

41Chapter 2: Managing SharePoint 2010

In addition to this new level of granular backups, SharePoint 2010 has improved
functionality when it comes to farm backup and restore. Farm backups can be done
either from Central Administration or through PowerShell. New in SharePoint 2010
is the option to create a backup that contains only the farm configuration—an XML
file with just the SharePoint configuration. This makes it possible for administrators
to perform a restore or to build a separate farm on different hardware with these
configuration settings. This is very useful when setting up new staging environments.

Chapter 21 covers the details of backup and restore operations in SharePoint 2010.

Configuration Wizard
When you first set up SharePoint 2010, you will not have any Web applications or
service applications. To help you create and configure these applications, SharePoint
2010 introduces the Farm Configuration Wizard. The Initial Farm Configuration Wizard
will start up the first time you go to your Central Administration page, as shown in
Figure 2-9. It can also be accessed from the navigation panel in Central Administration.

Figure 2-9. The Farm Configuration Wizard

42 PowerShel l for Microsoft SharePoint 2010 Administrators

The wizard walks you through a number of steps where you can select which
service applications you want to create and which service accounts to use for them.
SharePoint will apply all the settings and get the services working for you.

The Farm Configuration Wizard is very convenient, but it may not be the best route
for setting up enterprise environments. You cannot apply corporate naming standards
to the service application databases. The wizard will create each of these databases
with a globally unique identifier (GUID) in the name, which could create confusion for
both SharePoint and Database administrators. In addition, all service applications will
be set up to run under the same service account, but you can change this later from the
Manage Service Applications page in Central Administration.

NOTE To get full control over your environment from the beginning, we recommend that you
use the Farm Configuration Wizard only in proof-of-concept stages or when setting up test
environments.

In chapter 9, we will discuss how to create a scripted installation using PowerShell.

Managed Accounts
When setting up a SharePoint 2010 environment with different Web applications and
services, you can easily end up with quite a lot of service accounts. To keep track of
these accounts, and change their passwords before they expire, is an important and
time-consuming task. To mitigate the risk of having your SharePoint environment
malfunctioning or even have an outage due to expired passwords, SharePoint 2010
introduces managed accounts.

Managed accounts makes it possible to let SharePoint manage your service
accounts, and even to change their passwords automatically in accordance with your
company policy. This can be done transparently in the background, without any
interference or downtime of your SharePoint 2010 farm. In addition, it is also possible
to have SharePoint notify you when a password is about to expire, so you can handle
the password change manually.

You can set up and configure managed accounts throught the Managed Accounts
page in Central Administration, as shown in Figure 2-10. You can also handle them
through PowerShell.

43Chapter 2: Managing SharePoint 2010

STSADM
STSADM is a tool for command-line administration of SharePoint. In previous
versions, it has been the administrator’s best friend, allowing you to perform many of
the administrative tasks that were not available through the Central Administration
user interface.

STSADM is still available in SharePoint 2010. However, with the broad introduction
of PowerShell, the tool has not been further developed. Since everything that can be
done with STSADM can be done with PowerShell (but not the other way around), the
main reason it is still available is to provide the opportunity to transfer scripts and
batch files over to SharePoint 2010 without needing to rewrite them.

Figure 2-10. Configuring managed accounts

44 PowerShel l for Microsoft SharePoint 2010 Administrators

If you need to use STSADM, the tool can be found at the following location:
%COMMONPROGRAMFILES%\Microsoft Shared\Web Server Extensions\14\BIN.

NOTE Since SharePoint 2010 has a different Shared Service model than previous versions,
all the STSADM commands that were used for configuring Shared Service Providers (SSPs) are
now removed.

SharePoint Designer
Together with the release of SharePoint 2010, Microsoft released a new version of
SharePoint Designer. SharePoint Designer 2010 has been significantly updated and is
now a tool that can be used in the enterprise environment. Figure 2-11 shows the start
page of this new version.

Figure 2-11. The start page of SharePoint Designer 2010

45Chapter 2: Managing SharePoint 2010

Those of you who worked with SharePoint Designer 2007 know that there were
very limited options for building solutions that could be reused in sites other than the
one in which they were created. SharePoint Designer 2010 addresses this by changing
the focus from page editing to allowing users to build reusable solutions like lists,
workflows, content types, site columns, and data source connections.

One of the most anticipated enhancements is the ability to build advanced and
reusable workflows without needing to write any code. With SharePoint Designer
2010, you can package a workflow into a .wsp file, which can be used throughout the
whole SharePoint environment or imported into Microsoft Visual Studio for further
development. In addition, you can use Microsoft Visio to design workflows and then
import them into SharePoint Designer 2010, or you can export SharePoint workflows to
Visio, which is useful when documenting the solution.

As mentioned in Chapter 1, the addition of Business Connectivity Services makes
it much easier to connect to external databases or line-of-business applications. With
SharePoint Designer 2010, you can connect to these data sources through a wizard and
without needing to write any code.

TIP SharePoint Designer 2010 is a free tool. It can be downloaded from http://www.microsoft.com/
downloads.

Summary
This chapter introduced the various tools available to SharePoint 2010 administrators.
The SharePoint Central Administration site still plays a central role, offering a graphical
user interface from which you can configure and manage most of the available settings.

We looked at some of the options for mitigating performance problems through
resource throttling. These options allow you to control queries of large lists and protect
the environment from overload during peak hours by monitoring HTTP requests.

Service applications can easily be managed from Central Administration. You can
delegate administrative tasks by assigned dedicated administrators for each service
application.

Next, we briefly discussed some backup and restore options. Administrators now
have a more granular level of backup, thanks to the unattached content database
feature.

Management of service accounts has also been significantly improved. SharePoint
2010 now can manage all service accounts and handle changing passwords for you,
without affecting the environment.

Finally, we took a quck look at the new version of SharePoint Designer, another tool
that is available for managing SharePoint 2010.

In this chapter, we often referred to PowerShell as an alternative for configuring
options and additional settings. In fact, some items can be configured only through
PowerShell, and are just not available through the graphical user interface. In the next
part of this book, we will focus on how to use PowerShell in SharePoint 2010.

This page intentionally left blank

PART II An Introduction to
PowerShell in
SharePoint 2010

This page intentionally left blank

49

CHAPTER 3
Getting Started
with PowerShell in
SharePoint 2010

50 PowerShel l for Microsoft SharePoint 2010 Administrators

Welcome to the world of Windows PowerShell, where everything can be
automated with a single line of code! Well, that’s not completely true, but
thanks to the cmdlets, many administrative tasks can be accomplished

with just a few lines of code.
Before we dig into the automated world of SharePoint, we will take a tour of

Windows PowerShell and go through some of its concepts, so that you understand
how it can help you in your daily work. First on the menu is starting up Windows
PowerShell.

Starting Up Windows PowerShell
In Windows 7 and Windows Server 2008 R2, Windows PowerShell is installed by
default. You’ll find the Windows PowerShell icon on the Start menu in the Accessories
folder named Windows PowerShell. In Windows 7, the folder contains two different
icons pointing to Windows PowerShell: one labeled Windows PowerShell and one
labeled Windows PowerShell ISE. Windows PowerShell ISE offers additional features,
such as a graphical user interface and multiline editing. In this book, we’ll focus on the
standard Windows PowerShell console.

Click the Windows PowerShell icon to start the Windows PowerShell console. One
thing to keep in mind is that programs run in Windows Server 2008 R2 start without
administrative privileges by default. This also applies to Windows PowerShell. In order
to run Windows PowerShell with administrative privileges, you need to right-click the
icon and choose Run as administrator.

In SharePoint 2010, you can also start Windows PowerShell through the SharePoint
2010 Management Shell. You’ll find the SharePoint 2010 Management Shell in the
Microsoft SharePoint 2010 Products folder located under All Programs in the Start
menu. When you start PowerShell this way, the shell loads all SharePoint cmdlets
included in SharePoint 2010.

As you’ve seen, it’s easy to get Windows PowerShell up and running. Now let’s
review some PowerShell basics before diving into scripting.

Windows PowerShell Basics
Over the years, Microsoft’s command line has been relatively weak compared to
that offered by some other operating systems. This was mainly because Microsoft
developers made a tactical decision and put most of their resources into optimizing the
graphical interface, which allowed Microsoft to reach a leading position in the personal
computing market. One of the downsides of this is that the command line and scripting
capabilities were a little underdeveloped.

In 2003, Microsoft started to develop a new shell that would cover the command
line and scripting functionality in the Windows environment. The codename for the

51Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

shell was Monad, which became Windows PowerShell, Microsoft’s new command line
and scripting environment.

Windows PowerShell is based on the .NET Framework, which has deep ties to
almost every aspect of the Windows operating system. By using .NET, Windows
PowerShell gets quick and simple access to various components of Windows.

Why Use Windows PowerShell?
Let’s consider the typical administrative task of creating SharePoint team sites. You
can create a new team site in Microsoft SharePoint 2010 through the web interface by
clicking Site Actions, New Site, Collaboration, and finally Team Site. After that, you can
add the title and the site’s URL. You can also add other options, such as a description,
permissions, and navigation.

Adding one site through the web interface is quite simple and does not take that
much time. But what if you want to add ten new team sites? You could repeat the
same process ten times in the web interface, or you could start the SharePoint 2010
Management Shell and run the following command:

PS > 1..10 | ForEach-Object {

>> New-SPWeb -Url "http://SPServer01/Web$_" -Description "Web $_" -Template STS#0

>> }

>>

Url

http://spserver01/Web1

http://spserver01/Web2

http://spserver01/Web3

http://spserver01/Web4

http://spserver01/Web5

http://spserver01/Web6

http://spserver01/Web7

http://spserver01/Web8

http://spserver01/Web9

http://spserver01/Web10

This creates ten new web sites with just a couple of lines of code.
Windows PowerShell is a very powerful asset to SharePoint administrators. By

learning the Windows PowerShell language, you can save hours of work.

What Are Objects in Windows PowerShell?
One of Windows PowerShell’s biggest differences from classic shells is that it works
with objects instead of traditional strings. An object is a package containing both data
and information describing how to use the object. The information about how to use
the object is stored in methods. The data that you can retrieve and sometimes modify is
stored in properties.

52 PowerShel l for Microsoft SharePoint 2010 Administrators

Let’s check out an example of an object in PowerShell.

PS > $string = "My first String"

This example writes a bit of text enclosed within double quotation marks and
assigns the text to the variable $string. In traditional languages, the variable would
simply hold a string (nothing more than an encoded sequence of characters). But since
Windows PowerShell works with objects containing rich data, $string is actually
an instance of the .NET System.String class containing the various methods and
properties available from the class.

Let’s say we want to find out the length of the string. We can do that by simply
calling the Length property:

PS > $string.Length

15

When we call the Length property, Windows PowerShell returns the number 15,
since "My first String" contains 15 characters. Note that Windows PowerShell
does not contain a library of string routines but uses .NET to leverage the object
containing methods and properties.

Let’s compare the preceding example to VBScript. When getting the length of a
string in VBScript, we first need to create a variable holding the string, and then use the
Len function on the string to retrieve its length.

strString = "My first String"

Wscript.echo Len(strString)

Even though both examples retrieve the same information, Windows PowerShell
doesn’t need to call an extra function, since the object itself contains the information.

Objects also contain methods that you can use. If we want to present our string in
uppercase, we could simply use the uppercase method that is available on the object:

PS > $string.ToUpper()

MY FIRST STRING

If we want to achieve the same result with VBScript, we would need to use the
UCase function:

strString = "My first String"

Wscript.echo UCase(strString)

Note that different types of objects contain different methods and properties, as
you’ll see in upcoming examples.

What Are Windows PowerShell Cmdlets?
Windows PowerShell offers many built-in cmdlets to help you in your daily work.
A cmdlet (pronounced “command-let”) is a single-feature command that manipulates

53Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

objects in Windows PowerShell. You can easily recognize cmdlets by their verb-noun
name, such as Get-ChildItem.

NOTE You can find a full list of the built-in cmdlets in your local Windows PowerShell help or its
online version, at http://technet.microsoft.com/en-us/library/dd315281.aspx.

The Windows PowerShell product team publishes a set of guidelines for cmdlet
designers, to make the process of finding and using the right cmdlet easier and more
comprehensible. Probably the most important of those is that a cmdlet’s name should
always be a verb-noun pair, and that it should start with an approved (vetted by
Microsoft) verb.

Windows PowerShell V2 (released with Windows 7 and Windows Server 2008 R2)
introduced a new guideline, which recommends prefixing nouns with a short unique
technology-specific moniker, such as SP for SharePoint and AD for Active Directory.
Adding a prefix to the noun makes it easier to find cmdlets relating to a specific
technology.

SharePoint 2010 Cmdlets
The set of cmdlets shipped with Windows PowerShell is restricted to generic cmdlets
and those designed for managing different aspects of the Windows operating system.
To ensure extensibility and allow other technologies such as SharePoint to make full
use of its advantages, Windows PowerShell uses snap-ins—Microsoft .NET Framework
assemblies that may contain custom Windows PowerShell cmdlets.

The SharePoint 2010 snap-in for Windows PowerShell contains more than 500 cmdlets
that you can use to perform a large variety of administrative tasks. This snap-in is
loaded automatically when you run the SharePoint 2010 Management Shell. If you
start a standard PowerShell console, you need to load this snap-in manually in order to
access the SharePoint 2010 cmdlets. Two native Windows PowerShell cmdlets can help
with this: Get-PSSnapin to retrieve information about all the snap-ins registered in
the system, and Add-PSSnapin to actually load the snap-in into the current Windows
PowerShell session.

The following example uses the Get-PSSnapin cmdlet with the switch parameter
Registered to find the name of the SharePoint 2010 snap-in:

PS > Get-PSSnapin -Registered

Name : Microsoft.SharePoint.PowerShell

PSVersion : 1.0

Description : Register all administration Cmdlets for Microsoft Share-

Point Server

54 PowerShel l for Microsoft SharePoint 2010 Administrators

And here’s how to add the snap-in with the Add-PSSnapin cmdlet:

PS > Add-PSSnapin Microsoft.SharePoint.PowerShell

After you’ve added the SharePoint 2010 snap-in, you can access all the cmdlets
included in SharePoint 2010.

The standard PowerShell console and the SharePoint 2010 Management Shell also
differ in how threads are created and used. The PowerShell console runs each pipeline
(as marked by a hit of the “Enter” button), function, or script on its own thread, while
the SharePoint 2010 Management Shell runs each line, function, or script on the same
thread. When working with the SharePoint object model using PowerShell, running
code on separate threads can cause memory leaks, while commands running on the
same thread have a smaller chance of doing so. This is because some SharePoint objects
still use unmanaged code and the way memory is allocated to those objects.

The threading model used is determined by the value of the ThreadOptions
property of each PowerShell runspace (each PowerShell console window is a runspace).
The SharePoint 2010 Management Shell uses the ReuseThread option set in the
SharePoint.ps1 file that is executed every time you start the shell from the SharePoint
2010 menu group. The standard PowerShell console, however, does not have this
option configured out of the box and thus uses the default, which is UseNewThread.
A good practice is to set the ThreadOption property to ReuseThread when working
with SharePoint 2010 using the standard PowerShell console. The example below
demonstrates how you set the ThreadOption property.

PS > $Host.Runspace.ThreadOptions = "ReuseThread"

Finding the SharePoint 2010 Cmdlets
Windows PowerShell includes a great cmdlet called Get-Command. This cmdlet
returns basic information about cmdlets and other elements of Windows PowerShell
commands, such as functions, aliases, filters, scripts, and applications. Figure 3-1 shows
the output from Get-Command.

As mentioned earlier, all nouns of the SharePoint 2010 cmdlets start with SP. Knowing
this, you can retrieve all SharePoint cmdlets. Just use Get-Command’s –Noun parameter
followed by SP*:

PS > Get-Command -Noun SP*

The asterisk (*) is used to perform a wildcard match, meaning that you want to
retrieve all cmdlets, aliases, functions, and so on where the noun starts with SP. As
shown in Figure 3-2, the list is pretty long.

You can find out exactly how many SharePoint 2010 cmdlets are available
by counting them and specifying that you want only cmdlets returned using the
CommandType parameter:

PS > (Get-Command -Name *-SP* -CommandType cmdlet).Count

531

55Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

Here, you place the command within parentheses and use the Count property on
the resulting System.Array object to retrieve the actual number of cmdlets where the
noun starts with SP.

Placing commands or code within parentheses forces Windows PowerShell into
expression mode, meaning that the contents of the parentheses are evaluated (and in this
case executed) first. The result is returned as an object, and then that object’s methods
and properties are available for you to use. It’s also possible to count the number of
cmdlets using the Measure-Object cmdlet, as you will see in the “Measuring Objects
in Windows PowerShell” section later in this chapter.

You can use Get-Command to find specific SharePoint 2010 cmdlets. Say you want
to retrieve all SharePoint 2010 cmdlets that are used to manage site collections. You can
achieve this by specifying that the noun should include SPSite:

PS > Get-Command -Noun SPSite

CommandType Name Definition

----------- ---- ----------

Cmdlet Backup-SPSite Backup-SPSite [-Identity] <SPSitePipeBind> -Path <

Cmdlet Get-SPSite Get-SPSite [-Limit <String>] [-WebApplication <SPW

Cmdlet Move-SPSite Move-SPSite [-Identity] <SPSitePipeBind> -Destinat

Figure 3-1. Using the Get-Command cmdlet

56 PowerShel l for Microsoft SharePoint 2010 Administrators

Cmdlet New-SPSite New-SPSite [-Url] <String> [-Language <UInt32>] [-

Cmdlet Remove-SPSite Remove-SPSite [-Identity] <SPSitePipeBind> [-Delet

Cmdlet Restore-SPSite Restore-SPSite [-Identity] <String> -Path <String>

Cmdlet Set-SPSite Set-SPSite [-Identity] <SPSitePipeBind> [-OwnerAli

The output from the command shows seven different cmdlets that you can use
when working with site collections. If you take a closer look at the verbs in the cmdlets,
you’ll see that they are self-describing. Get is used for getting information, Set is used
for modifying site collections, and so on.

You can go even further and get information on a specific cmdlet. Here is how you
can use Get-Command to retrieve information on the Get-SPSite cmdlet:

PS > Get-Command Get-SPSite

CommandType Name Definition

----------- ---- ----------

Cmdlet Get-SPSite Get-SPSite [-Limit <String>] [-WebApplication

You can see the command type, its name, and its definition.
Next, let’s see how to get information about how to use a cmdlet in SharePoint 2010.

Figure 3-2. Using Get-Command with the -Noun parameter

57Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

Getting Help
The Get-Help cmdlet returns information about concepts and commands in Windows
PowerShell, including cmdlets, providers, aliases, functions, and scripts. Using Get-
Help is a great way to find out more about how to use the various cmdlets in Windows
PowerShell. Not only do you get detailed information about when and how to use the
cmdlets, you also get great examples that show you how to perform administrative
tasks.

Here’s how to get help on the Get-SPSite cmdlet:

PS > Get-Help Get-SPSite

As shown in Figure 3-3, the command returns information that helps you understand
the Get-SPSite cmdlet. It displays a synopsis that summarizes the purpose of the
cmdlet, a syntax statement that shows how to run the cmdlet, a description that explains
the cmdlet in detail, and related links to find out more about other cmdlets and resources.
At the bottom of the returned text, you see that you can use the Get-Help cmdlet with
additional parameters to get even more information.

If you want to see examples on how to use the cmdlet, add the Examples parameter:

Get-Help Get-SPSite -Examples

Figure 3-3. Getting help with the Get-SPSite cmdlet

58 PowerShel l for Microsoft SharePoint 2010 Administrators

Figure 3-4. Using the Get-Help –Examples parameter

As shown in Figure 3-4, this command shows examples of how a cmdlet works in
action.

Other Get-Help parameters are Detailed, which adds parameter descriptions and
examples to the basic help display, and Full, which displays the entire help file for a
cmdlet.

Get-Help also supports wildcards when searching for information about cmdlets
and concepts in Windows PowerShell. Using wildcards in combination with verbs or
nouns is a quick way to find out more about the many cmdlets included in SharePoint
2010. For example, you can get help on all cmdlets using the noun SPSite as follows:

PS > Get-Help *-SPSite

This displays each cmdlet’s synopsis, instead of the complete definition, as shown in
Figure 3-5.

It’s also possible to access help for a particular cmdlet by typing the cmdlet’s name
followed by -?:

PS > Get-SPSite -?

Windows PowerShell also includes conceptual help topics stored in help files. Help
topics in Windows PowerShell start with about_ and contain detailed information

59Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

about functions, providers, scripts, operators, and so on. To get a list of all help topics
available, use this command:

PS > Get-Help about_

As shown in Figure 3-6, this command displays a long list containing all available
help files in Windows PowerShell. If you want to retrieve information from a specific
help topic, simply type Get-Help followed by the topic’s name.

The help for both the core Windows PowerShell and the SharePoint 2010 snap-in
cmdlets are also available in the CHM format.

Figure 3-5. Using Get-Help to retrieve information about multiple cmdlets

Figure 3-6. Using Get-Help about_ to get a list of help topics

60 PowerShel l for Microsoft SharePoint 2010 Administrators

Aliases
Aliases are nicknames for cmdlets in Windows PowerShell that we can use instead of
typing the cmdlets name. An example of an alias is dir, which is actually an alias for the
Get-ChildItem cmdlet. To retrieve a list of all available aliases in Windows PowerShell,
we can use the Get-Alias cmdlet and to retrieve a specific alias we can type

PS > Get-Alias dir

CommandType Name Definition

----------- ---- ----------

Alias dir Get-ChildItem

If we want to find out which aliases a cmdlet supports, we can use the -definition
parameter and specify the cmdlets name.

PS > Get-Alias -Definition Get-ChildItem

CommandType Name Definition

----------- ---- ----------

Alias dir Get-ChildItem

Alias gci Get-ChildItem

Alias ls Get-ChildItem

We see that the Get-ChildItem cmdlet supports three different aliases, dir, gci,
and ls. We can create our own aliases through the Set-Alias cmdlet. If we want to
create an alias for a SharePoint 2010 cmdlet, we can type

PS > Set-Alias -Name site -Value Get-SPSite

PS > Get-Alias site

CommandType Name Definition

----------- ---- ----------

Alias site Get-SPSite

When we type Get-Alias and specify our new alias as input to the command, we
see that our new alias is created in the current session. We can now use this alias to run
the cmdlet as shown in the example below.

PS > site

Url

http://spserver01

NOTE The aliases created exist only in the current session. To make the aliases available in
different Windows PowerShell sessions, add the alias to a profile script.

61Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

Using Parameters with Cmdlets
Most cmdlets in Windows PowerShell accept parameters that allow you to provide
input and select options that tell the cmdlet how to behave. Parameters vary between
different cmdlets, so it’s a good idea to use the Get-Help cmdlet to see which
parameters a specific cmdlet supports.

Let’s continue looking at the Get-SPSite cmdlet. You can get information about all
supported parameters with the Get-Help cmdlet by using the Parameter parameter
with an asterisk:

PS > Get-Help Get-SPSite -Parameter *

Figure 3-7 shows the result. Let’s take a closer look at how to use the different
parameters.

Figure 3-7. View Get-SPSite parameters

The Identity parameter is used to specify the URL or the GUID of the site collection.
For example, if you have a site with the URL http://SPServer01, you can use the Identity
parameter followed by this URL to retrieve the site collection in Windows PowerShell:

PS > Get-SPSite -identity http://SPServer01

Url

http://spserver01

62 PowerShel l for Microsoft SharePoint 2010 Administrators

Notice how the cmdlet displays only the URL of the site collection, although
the returned object has a lot more properties. To generate this default display of
various .NET objects, Windows PowerShell uses formatting files, which are specially
constructed XML files whose names end in .format.ps1xml.

Windows PowerShell includes ten formatting files stored in the PowerShell install
directory, and SharePoint 2010 comes with 13 additional formatting files stored in
the SharePoint application directory (the 14 hive). The display of the Microsoft
.SharePoint.SPSite object, which represents a site collection, is defined in the
largest of these files, SharepointPowershell.Format.ps1xml, using the following code:

 <View>

 <Name>SPSite</Name>

 <ViewSelectedBy>

 <TypeName>Microsoft.SharePoint.SPSite</TypeName>

 </ViewSelectedBy>

 <TableControl>

 <TableHeaders>

 <TableColumnHeader>

 <Width>55</Width>

 <Alignment>left</Alignment>

 </TableColumnHeader>

 </TableHeaders>

 <TableRowEntries>

 <TableRowEntry>

 <TableColumnItems>

 <TableColumnItem>

 <PropertyName>Url</PropertyName>

 </TableColumnItem>

 </TableColumnItems>

 </TableRowEntry>

 </TableRowEntries>

 </TableControl>

 </View>

The formatting affects the display only, and not the functionality of objects or the
way they are passed along the pipeline.

NOTE It is also possible to create your own custom formatting files in Windows PowerShell if
required.

To see additional properties of the object, you can pipe the object to the Format-List
cmdlet and display additional properties:

PS > Get-SPSite -identity http://SPServer01 | Format-List

Figure 3-8 shows the result of this example. Using pipelines is a simple but powerful
way of combining cmdlets, as discussed in the next section.

63Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

You can also place the command within parentheses and call a specific property.
The following example retrieves the Id property of the object:

PS > (Get-SPSite -identity http://SPServer01).Id

Guid

f8691b03-af19-478c-b06b-e71b0c74d0d0

The object’s Id is of the type System.Guid. Remember how the Identity
parameter accepts a URL or a GUID as input? If you know the Id of a site collection,
you can use it to retrieve a site collection with the Get-SPSite cmdlet. The following
example stores the Id in a variable and uses it with the Get-SPSite cmdlet to retrieve
the site collection.

PS > $id = (Get-SPSite -identity http://SPServer01).Id

PS > Get-SPSite $id

Url

http://spserver01

Figure 3-8. Combining cmdlets in a pipeline

64 PowerShel l for Microsoft SharePoint 2010 Administrators

If you want to find out which site collections are available in a content database,
you can use the -ContentDatabase parameter followed by the name or GUID of
the content database. This example lists all site collections within the WSS_Content
database.

PS > Get-SPSite -ContentDatabase WSS_Content

Url

http://spserver01

http://spserver01/my

The Get-SPSite cmdlet also supports the Limit parameter, which allows you to
limit the number of site collections that are listed. By default, the limit is set to 200. You
can specify a different number or set the limit to ALL, which lists all site collections.
Let’s see what happens if we set the limit to 1.

PS > Get-SPSite -ContentDatabase WSS_Content -Limit 1

Url

http://spserver01

WARNING: More results were found in Get-SPSite but were not returned.

Use '-Limit ALL' to return all possible results.

Since the content database contains more than one site collection, a warning message is
displayed.

Another parameter supported by Get-SPSite is Filter. This parameter allows
you to list all site collections that match a filter. The following example uses the Filter
parameter to list all site collections where the owner equals PowerShell\administrator:

PS > Get-SPSite -Filter {$_.Owner -eq "PowerShell\administrator"}

Url

http://spserver01/my

http://spserver01

You can use different operators within the filter, such as -match and -like.
One parameter to keep in mind is the WhatIf switch. This is a risk-management

parameter that forces a command to report what would happen if you executed it.
When you use the WhatIf parameter, the command is not executed; instead, a message
is returned that describes what would happen if you performed the command. The
following example demonstrates using the WhatIf parameter with the Remove-
SPSite cmdlet, which is used to delete site collections.

PS > Remove-SPSite http://SPServer01 -WhatIf

What if: Performing operation "Remove-SPSite" on Target "http://spserver01".

65Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

Pipelines
The pipeline is one of the most important operators in Windows PowerShell. It’s used
to combine a series of commands, sending the result of one command to the next. Each
command in the pipeline receives its input from the previous command. Remember
how Windows PowerShell works with objects instead of strings? When you combine
commands with a pipeline, you do not just send a simple string down the pipeline—
you send a rich object containing methods and properties.

Let’s look at an example that shows how an object is passed from one command to
another using a pipeline:

PS > Get-SPSite -Identity http://SPServer01 | Get-SPWeb

This example uses the Get-SPSite and Get-SPWeb cmdlets. It binds to a site
collection with the Get-SPSite cmdlet, and then sends the object through a pipeline
to the Get-SPWeb cmdlet, which is used to return all subsites of the specified site, as
shown in Figure 3-9.

Figure 3-9. Combining cmdlets with a pipeline

The Get-SPWeb cmdlet supports the Identity parameter, which can take the
URL of the target site as input. But if you look at the help file for Get-SPWeb, you may
notice that the type of this parameter is SPWebPipeBind, meaning that the value for it
can also be obtained from the pipeline.

Using Select-Object in a Pipeline
The Select-Object cmdlet offers a quick and easy way of gathering information from
objects in Windows PowerShell. Notice how the command in the previous example
displayed only the URLs of the sites listed in a table, although the object has a lot more
properties. This is actually controlled by the formatting file stored in the SharePoint

66 PowerShel l for Microsoft SharePoint 2010 Administrators

application directory (the 14 hive). Let’s see how to list more properties using the
Select-Object cmdlet.

PS > Get-SPSite -Identity http://SPServer01 | Get-SPWeb |

>> Select-Object -Property Title, Url, Description

Title Url Description

----- --- -----------

Home http://spserver01 Home

Team Site http://spserver01/Web1 Web 1

Team Site http://spserver01/Web10 Web 10

Team Site http://spserver01/Web2 Web 2

Team Site http://spserver01/Web3 Web 3

Team Site http://spserver01/Web4 Web 4

Team Site http://spserver01/Web5 Web 5

Team Site http://spserver01/Web6 Web 6

Team Site http://spserver01/Web7 Web 7

Team Site http://spserver01/Web8 Web 8

Team Site http://spserver01/Web9 Web 9

This example uses the Select-Object cmdlet to display the title, URL, and
description of all subsites in a site collection. The Select-Object cmdlet includes the
First parameter, which allows you to select a number of objects from the beginning.
The following example retrieves a specified number of subsites in a site collection.

PS > Get-SPSite -Identity http://SPServer01 | Get-SPWeb |

>> Select-Object -Property Title, Url, Description -First 2

Title Url Description

----- --- -----------

Home http://spserver01 Home

Team Site http://spserver01/Web1 Web 1

If you want to select objects from the end, use the Last parameter.
The Select-Object cmdlet contains a great feature that allows you to create

constructed (hash table-based) properties. You can add constructed properties using a
hash table with name and expression keys. One thing that might seem a little odd is the
$_ variable used in the constructed property.

The $_ variable is an automatic variable in Windows PowerShell. It represents the
current object in the pipeline. In other words, it represents each object that goes through
the pipeline and performs the calculation on each object. To access the properties on
an object with the $_ variable, you need to add a dot followed by the property you
want to access. The following example demonstrates how to access the Groups and
SiteUsers properties.

PS > Get-SPWeb http://SPServer01 |

>> Select -Property Title, Description,

67Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

>> @{Name="Groups";Expression={$_.Groups.Count}},

>> @{Name="SiteUsers";Expression={$_.SiteUsers.Count}}

Title Description Groups SiteUsers

----- ----------- ------ ---------

Home Home 9 17

This example uses the Count property to calculate the actual number of site users
and groups in the subsite.

If you want to select all properties from an object in Windows PowerShell, you can
use Select-Object followed by an asterisk:

PS > Get-SPWeb -Identity http://SPServer01 | Select-Object -Property *

Figure 3-10 shows the result of this command.

Figure 3-10. Using Select-Object to list all properties

You can go further with a pipeline and combine it with other cmdlets to perform
additional tasks. For example, to save the properties in a CSV file, add the Export-Csv
cmdlet to the pipeline.

PS > Get-SPWeb -Identity http://SPServer01 | Select-Object -Property * |

>> Export-Csv C:\SiteInformation.csv

>>

68 PowerShel l for Microsoft SharePoint 2010 Administrators

Now you can retrieve the information from the CSV file with the Import-Csv cmdlet
and select specified properties using the Select-Object cmdlet.

Measuring Objects in Windows PowerShell
Windows PowerShell includes a lot of cmdlets that help us in our daily work.
Combining cmdlets through a pipeline is a great way to solve complex administrative
tasks with a one-liner in Windows PowerShell. Here is another example that uses a
pipeline to measure the number of web templates available in SharePoint 2010:

PS > Get-SPWebTemplate | Measure-Object

Count : 50

Average :

Sum :

Maximum :

Minimum :

Property :

This example uses the Get-SPWebTemplate cmdlet to retrieve all available web
templates, and then send the objects to the Measure-Object cmdlet, which returns the
number of web templates available.

An earlier example demonstrated using the Get-Command cmdlet to retrieve all
SharePoint 2010 cmdlets and placed the command within parentheses, allowing access
to the Count property. As you’ve seen here, you can achieve the same goal using the
Measure-Object cmdlet.

Sorting Objects in Windows PowerShell
Sorting objects by property values can be achieved with the Sort-Object cmdlet. The
Sort-Object cmdlet supports a set of parameters that you can use to specify which
property to sort on, which order to sort in, and more.

The following example retrieves all sites from a site collection and sorts them by the
time they were created.

PS > Get-SPSite -Identity http://SPServer01 | Get-SPWeb |

>> Sort-Object -Property Created

Url

http://spserver01

http://spserver01/Web1

http://spserver01/Web2

http://spserver01/Web3

http://spserver01/Web4

http://spserver01/Web5

http://spserver01/Web6

69Chapter 3: Gett ing Started with PowerShel l in SharePoint 2010

http://spserver01/Web7

http://spserver01/Web8

http://spserver01/Web9

http://spserver01/Web10

Summary
This chapter introduced Windows PowerShell, including how to start it. You learned
how to call the SharePoint 2010 cmdlets and get additional information about cmdlets
explaining how and when to use them. We looked at cmdlet parameters and how to
use them to provide information and set options that tell the cmdlet how to behave.
The last part of the chapter showed how to send commands through a pipeline to solve
advanced administrative tasks with a simple one-liner in Windows PowerShell.

The next chapter describes how to manage SharePoint 2010 through Windows
PowerShell using the SharePoint 2010 cmdlets.

This page intentionally left blank

71

CHAPTER 4 Managing SharePoint 2010
with Windows PowerShell

72 PowerShel l for Microsoft SharePoint 2010 Administrators

As you learned in Chapter 3, the SharePoint 2010 snap-in for Windows PowerShell
includes more than 500 cmdlets, and some of these are designed to retrieve
information from SharePoint. This chapter focuses on the cmdlets for

configuring the SharePoint 2010 environment—that is, creating and deleting objects
and modifying their properties.

Managing Permissions in SharePoint 2010
Running the SharePoint 2010 cmdlets in Windows PowerShell requires the user to be
a member of the SharePoint Shell Access role in the configuration database, and the
WSS_ADMIN_WPG local security group on the SharePoint 2010 server.

The Add-SPShellAdmin cmdlet is used to add users to the SharePoint Shell Access
role and to the WSS_ADMIN_WPG local security group on all servers that have the
SharePoint Foundation 2010 Web Application role. To add a user to the SharePoint Shell
Access role for a specific database, you can type:

PS > Add-SPShellAdmin -UserName powershell\nigo `

>> -database (Get-SPContentDatabase -Identity WSS_Content)

PS > Get-SPShellAdmin

UserName

POWERSHELL\nigo

In this example, we use the Add-SPShellAdmin cmdlet to add the user “powershell\
nigo” to the SharePoint Shell Access role in the WSS_Content database and the farm
configuration database. Notice how we also use the Get-SPContentDatabase cmdlet to
retrieve a specific content database. If you do not specify a database, the user will be
added only to the SharePoint Shell Access role in the farm configuration database.

The Get-SPShellAdmin cmdlet returns the login names of users who have the
SharePoint Shell Access role in a specific database. You can use the cmdlet by typing:

PS > Get-SPShellAdmin (Get-SPContentDatabase -Identity WSS_Content)

UserName

POWERSHELL\nigo

It is also possible to remove users from the SharePoint Shell Access role using the
Remove-SPShellAdmin cmdlet as demonstrated in the example below.

PS > Remove-SPShellAdmin -UserName powershell\nigo `

>> -database (Get-SPContentDatabase -Identity WSS_Content)

73Chapter 4: Managing SharePoint 2010 with Windows PowerShel l

Managing Content Databases in SharePoint 2010
Windows PowerShell includes eight cmdlets that you can use when working with
the SharePoint 2010 content database. To retrieve a list of all content database cmdlets
available, use Get-Command with the Noun parameter to list all cmdlets where the noun
is SPContentDatabase:

PS > Get-Command -Noun SPContentDatabase

CommandType Name Definition

----------- ---- ----------

Cmdlet Dismount-SPContentDatabase Dismount-SPContentDatabase

Cmdlet Get-SPContentDatabase Get-SPContentDatabase [[-Id

Cmdlet Mount-SPContentDatabase Mount-SPContentDatabase [-N

Cmdlet New-SPContentDatabase New-SPContentDatabase [-Nam

Cmdlet Remove-SPContentDatabase Remove-SPContentDatabase [-

Cmdlet Set-SPContentDatabase Set-SPContentDatabase [-Ide

Cmdlet Test-SPContentDatabase Test-SPContentDatabase [-Id

Cmdlet Upgrade-SPContentDatabase Upgrade-SPContentDatabase [

We’ll explore how to use the first six cmdlets here.

Getting a SharePoint 2010 Content Database
The Get-SPContentDatabase cmdlet is used to return one or more content databases
in SharePoint 2010. You can retrieve a specific content database, a content database
based on a site collection, or a content database from a specified web application.

Let’s start by retrieving all available content databases:

PS > Get-SPContentDatabase

Id : 96dfa348-42df-4e9b-bbc5-1f4e8ee1051e

Name : WSS_Content

WebApplication : SPWebApplication Name=SharePoint - 80

Server : SPServer01

CurrentSiteCount : 2

To retrieve content databases for a specific site collection, use the Site parameter:

PS > Get-SPContentDatabase -Site http://SPServer01

Id : 96dfa348-42df-4e9b-bbc5-1f4e8ee1051e

Name : WSS_Content

WebApplication : SPWebApplication Name=SharePoint - 80

Server : SPServer01

CurrentSiteCount : 2

74 PowerShel l for Microsoft SharePoint 2010 Administrators

It is even possible to specify a web application and retrieve the content databases
attached to it. If the web application is associated with more than one content database,
all are returned.

PS > Get-SPContentDatabase -WebApplication "SharePoint - 80"

Id : 96dfa348-42df-4e9b-bbc5-1f4e8ee1051e

Name : WSS_Content

WebApplication : SPWebApplication Name=SharePoint - 80

Server : SPServer01

CurrentSiteCount : 2

Like SPSite and SPWeb, the SPContentDatabase class has a large number of
properties containing rich information, which you can retrieve through the appropriate
cmdlet. As you saw in Chapter 3, the Format-List cmdlet displays the information as
a list. Used with the asterisk wildcard, it retrieves all properties:

PS > Get-SPContentDatabase | Format-List *

Figure 4-1 shows the output from this command.

Figure 4-1. Using Format-List to display all properties

75Chapter 4: Managing SharePoint 2010 with Windows PowerShel l

Configuring the SharePoint 2010 Content Database
The Set-SPContentDatabase cmdlet is used to change the properties of a content
database. This cmdlet allows you to change the maximum number of site collections
that a content database can host, change the status of the content database, and specify
the number of sites that can be created before a warning event is generated.

We’ll start with modifying the maximum number of site collections allowed. First,
let’s get the current value of the MaximumSiteCount property:

PS > (Get-SPContentDatabase -Site http://SPServer01).MaximumSiteCount

15000

Here’s how to change the value using the Set-SPContentDatabase cmdlet:

PS > Get-SPContentDatabase -Site http://SPServer01 |

>> Set-SPContentDatabase -MaxSiteCount 20000

PS > (Get-SPContentDatabase -Site http://SPServer01).MaximumSiteCount

20000

This example uses Get-SPContentDatabase to retrieve a content database, and
then uses a pipeline to send the object to the Set-SPContentDatabase cmdlet. We
then use the MaxSiteCount parameter and change the value to 20000, increasing it by
5,000 sites. When we check the MaximumSiteCount property, we can see that the value
has been updated.

Next, let’s change the status of the content database to Offline:

PS > (Get-SPContentDatabase -Site http://SPServer01).Status

Online

PS > Get-SPContentDatabase -Site http://SPServer01 |

>> Set-SPContentDatabase -Status Offline

PS > (Get-SPContentDatabase -Site http://SPServer01).Status

Offline

In this example, we use the -Status parameter to change the status of the
content database from Online to Offline. We verify that the change was made
using the Get-SPContentDatabase cmdlet. It is just as simple to set the status to
Online, as follows:

PS > Get-SPContentDatabase -Site http://SPServer01 |

>> Set-SPContentDatabase -Status Online

Attaching and Detaching a Content Database in SharePoint 2010
The SharePoint 2010 snap-in for Windows PowerShell offers two cmdlets that allow
you to attach and detach content databases to a SharePoint 2010 farm.

76 PowerShel l for Microsoft SharePoint 2010 Administrators

To detach a content database, use the Dismount-SPContentDatabase cmdlet:

PS > Get-SPContentDatabase -Site http://SPServer01 | Dismount-SPContentDatabase

Confirm

Are you sure you want to perform this action?

Performing operation "Dismount-SPContentDatabase" on Target "WSS_Content".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"): Y

As you can see, Windows PowerShell displays a confirmation prompt asking if you
are sure that you want to perform the action. Cmdlets that perform actions that involve
a risk to the system or to user data often require a confirmation. When you type Y or
just press ENTER, the action is performed. If you now try to access your content database
with the Get-SPContentDatabase cmdlet, nothing will be returned, since the content
database is detached from the farm.

To attach a content database to a farm in SharePoint 2010, use the Mount-
SPContentDatabase cmdlet:

PS > Mount-SPContentDatabase "WSS_Content" -DatabaseServer SPServer01 `

>> -WebApplication http://SPServer01

Id : 96dfa348-42df-4e9b-bbc5-1f4e8ee1051e

Name : WSS_Content

WebApplication : SPWebApplication Name=SharePoint - 80

Server : SPServer01

CurrentSiteCount : 2

Creating a New Content Database
Windows PowerShell lets you create new content databases with the New-
SPContentDatabase cmdlet. The cmdlet has two required parameters:

 The Name parameter sets the name of the content database.

 The WebApplication parameter specifies to which web application in
SharePoint 2010 the new content database should be attached.

The following example creates a new content database called MyContentDB and
attaches it to a web application.

PS > New-SPContentDatabase -Name "MyContentDB" `

>> -WebApplication http://SPServer01:5077

Id : 8975393a-cc0a-4d68-ab69-078b1b870904

Name : MyContentDB

WebApplication : SPWebApplication Name=My WebApplication

Server : SPServer01

CurrentSiteCount : 0

77Chapter 4: Managing SharePoint 2010 with Windows PowerShel l

Removing a Content Database in SharePoint 2010
To remove a content database with Windows PowerShell, use the Remove-
SPContentDatabase cmdlet:

PS > Get-SPContentDatabase -Identity "MyContentDB" | Remove-SPContentDatabase

Confirm

Are you sure you want to perform this action?

Performing operation "Remove-SPContentDatabase" on Target "MyContentDB".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"): Y

Confirm

Removing 'MyContentDB' will permananetly delete the SQL database,

permanently deleting all content stored within it.

Use Dismount-SPContentDatabase if you do not want to delete the SQL database.

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"): Y

In this example, we use Get-SPContentDatabase to retrieve a content database
and a pipeline to send the current object to the Remove-SPContentDatabase cmdlet.
As with the Dismount-SPContentDatabase cmdlet, when you use Remove-
SPContentDatabase, Windows PowerShell asks for confirmation before performing
the operation.

Managing SharePoint 2010 Web Applications
Four Windows PowerShell cmdlets are available for working with web applications
in SharePoint 2010. You can retrieve a list of all the web application cmdlets using the
Get-Command cmdlet with the noun SPWebApplication:

PS > Get-Command -Noun SPWebApplication

CommandType Name Definition

----------- ---- ----------

Cmdlet Get-SPWebApplication Get-SPWebApplication [[-Identity] <

Cmdlet New-SPWebApplication New-SPWebApplication -Name <String>

Cmdlet Remove-SPWebApplication Remove-SPWebApplication [-Identity]

Cmdlet Set-SPWebApplication Set-SPWebApplication [-Identity] <S

We’ll look at each of these cmdlets, starting with Get-SPWebApplication.

78 PowerShel l for Microsoft SharePoint 2010 Administrators

Getting Web Applications in SharePoint 2010
The Get-SPWebApplication cmdlet returns the web applications in SharePoint 2010.
You can use the Identity parameter to return a specific web application. If you don’t
specify a web application, all web applications are returned:

PS > Get-SPWebApplication

DisplayName Url

----------- ---

SharePoint - 80 http://spserver01/

By default, Central Administration is excluded from the set of returned web
applications. Using the IncludeCentralAdministration switch parameter forces
the Central Administration web application to be included:

PS > Get-SPWebApplication -IncludeCentralAdministration

DisplayName Url

----------- ---

SharePoint - 80 http://spserver01/

SharePoint Central Administ... http://spserver01:23815/

Modifying Web Applications in SharePoint 2010
To configure web applications in SharePoint 2010, use the Set-SPWebApplication
cmdlet. This cmdlet supports a variety of parameters corresponding to different
configuration settings of web applications, such as e-mail addresses, SMTP server, and
time zone.

First, let’s look at how to configure the From and Reply-to e-mail addresses. When
configuring the e-mail addresses used by the web application, you must specify an
SMTP server to use.

PS > Get-SPWebApplication -Identity http://SPServer01 |

>> Set-SPWebApplication -OutgoingEmailAddress from@nima.com `

>> -ReplyToEmailAddress reply@nima.com -SMTPServer ExcServer01

In this example, we use Get-SPWebApplication to retrieve a specific web application,
and then pipe the object to the Set-SPWebApplication cmdlet, where we use the
SMTPServer parameter to specify which SMTP server to use. We also specify the From
and Reply-to e-mail addresses that should be used by the web application. Figure 4-2
shows what the configuration looks like in Central Administration.

It is also possible to allow anonymous access with the Set-WebApplication
cmdlet. Allowing anonymous access at the web application level enables individual site
collection administrators to turn on anonymous access.

PS > Get-SPWebApplication -Identity http://SPServer01 |

>> Set-SPWebApplication -AllowAnonymousAccess -Zone Default

79Chapter 4: Managing SharePoint 2010 with Windows PowerShel l

To disable anonymous access, use the same switch parameter followed by :$False:

PS > Get-SPWebApplication -Identity http://SPServer01 |

>> Set-SPWebApplication -AllowAnonymousAccess:$False -Zone Default

CAUTION If anonymous access is turned off when using Forms-based authentication, Forms-
aware client applications may fail to authenticate correctly.

Use the Set-SPWebApplication cmdlet’s DefaultTimeZone parameter to set the
time zone that should be used for new site collections:

PS > Get-SPWebApplication -Identity http://SPServer01 |

>> Set-SPWebApplication -DefaultTimeZone 4

In this example, we use the DefaultTimeZone parameter to set the time zone
used by new site collections to 4, which corresponds to Western Europe Standard
Time. You can list the other values for time zones using the SPRegionalSettings class as
demonstrated below.

PS > [Microsoft.SharePoint.SPregionalSettings]::Globaltimezones

Creating a New Web Application in SharePoint 2010
You can create new web applications in SharePoint 2010 with the New-
SPWebApplication cmdlet. This cmdlet has several parameters for configuring the
new web application, including the following:

 The Name parameter specifies the name of the new web application.

 The Port parameter sets the port from which the web application can be accessed.

Figure 4-2. Setting the From e-mail address, Reply-to e-mail address, and SMTP mail
server through PowerShell

80 PowerShel l for Microsoft SharePoint 2010 Administrators

 The ApplicationPool parameter specifies the application pool to use. If the
application pool does not exist, a new application pool will be created.

 When creating new application pools with the New-SPWebApplication
cmdlet, an application pool account must be specified. You can specify the
account through the ApplicationPoolAccount parameter.

Here is a basic example showing how to create a web application through Windows
PowerShell:

PS > New-SPWebApplication -Name "My WebApplication" -Port 5077 `

>> -ApplicationPool "MyAppPool" `

>> -ApplicationPoolAccount (Get-SPManagedAccount powershell\managedaccount)

DisplayName Url

----------- ---

My WebApplication http://spserver01:5077/

In this example, we use the Get-SPManagedAccount cmdlet to retrieve an account
that is registered in the configuration database.

When the command is run, a content database is also created. Since we didn’t
specify a name for the content database in this example, a name will be autogenerated
in the format WSS_Content_<GUID>. Alternatively, you can specify a custom name
through the DatabaseName parameter.

Removing a Web Application in SharePoint 2010
The Remove-SPWebApplication cmdlet removes an existing web application. You can
use the Zone parameter to remove a specific zone. If the zone is not specified, all zones
are removed. The cmdlet also supports switch parameters that allow you to delete
the IIS web site associated with the target zone (or all zones) and the content database
associated with the web application. Here’s an example:

PS > Remove-SPWebApplication -Identity http://SPServer01:5077 `

>> -DeleteIISSite -RemoveContentDatabases

Confirm

Are you sure you want to perform this action?

Performing operation "Remove-SPWebApplication" on Target "My WebApplication".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"): Y

In this example, we remove the web application that we previously created. We also
add the DeleteIISSite and RemoveContentDatabase switch parameters to remove
the IIS web site and content database associated with the web application. As with the
other removal cmdlets, Windows PowerShell prompts for a confirmation before the
command is executed.

81Chapter 4: Managing SharePoint 2010 with Windows PowerShel l

Managing SharePoint 2010 Sites
Let’s see which cmdlets are provided for handling site collections:

PS > Get-Command -Noun SPSite

CommandType Name Definition

----------- ---- ----------

Cmdlet Backup-SPSite Backup-SPSite [-Identity] <SPSitePipeBind>

Cmdlet Get-SPSite Get-SPSite [-Limit <String>] [-WebApplicat

Cmdlet Move-SPSite Move-SPSite [-Identity] <SPSitePipeBind> -

Cmdlet New-SPSite New-SPSite [-Url] <String> [-Language <UIn

Cmdlet Remove-SPSite Remove-SPSite [-Identity] <SPSitePipeBind>

Cmdlet Restore-SPSite Restore-SPSite [-Identity] <String> -Path

Cmdlet Set-SPSite Set-SPSite [-Identity] <SPSitePipeBind> [-

We’ll start with the Set-SPSite cmdlet.

Configuring a Site Collection in SharePoint 2010
The Set-SPSite cmdlet is used to configure a site collection. This cmdlet supports
a few interesting parameters that you can use to change a site collection. Here’s how to
add a secondary owner to a site collection:

PS > Set-SPSite -Identity http://SPServer01 -SecondaryOwnerAlias powershell\nigo

In this example, we use the SecondaryOwnerAlias parameter and set the domain
user powershell\nigo as the secondary owner of the site collection.

Another nice feature is the UserAcountDirectoryPath parameter, which defines
a scope for user accounts, meaning that only accounts within the organizational unit
can be added as members of the site collection. People pickers will also be limited
to this scope. The following example limits the scope to the Company/Site/Users
organizational unit.

PS > Set-SPSite -Identity http://SPServer01 `

>> -UserAccountDirectoryPath "OU=Users,OU=Site,OU=Company,DC=Powershell,DC=nu"

If we now try searching for users through the people picker in SharePoint, we
will be able to find users only within the scope and users already added to the site
collection.

NOTE Users added before the scope change is committed will still be able to access the site
collection.

82 PowerShel l for Microsoft SharePoint 2010 Administrators

Backing Up and Restoring Site Collections in SharePoint 2010
You can take a backup of a site collection with the Backup-SPSite cmdlet and restore
a site collection from a backup file using the Restore-SPSite cmdlet. The use of these
cmdlets is pretty straightforward.

Here is an example of taking a backup of a site collection:

PS > Backup-SPSite -Identity http://SPServer01 -Path C:\Backup\siteCollection.bak

By default, the site collection is temporarily set to read-only, so that no changes can
be made while the backup is performed. The Backup-SPSite cmdlet also supports
the NoSiteLock switch parameter, which specifies that the site collection not be locked
during the backup, however, this parameter is not recommended using if users are
writing to the site collection while a backup is performed. Using the UseSqlSnapshot
parameter is recommended if the database server hosting the content database supports
database snapshots.

After you have a backup file of the site collection, you can use the Restore-SPSite
cmdlet to restore the site collection:

PS > Restore-SPSite -Identity http://SPServer01 -Path C:\Backup\siteCollection.bak

Confirm

Are you sure you want to perform this action?

Performing operation "Restore-SPSite" on Target "http://SPServer01".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is "Y"): Y

Typing Y or pressing ENTER at the confirmation prompt performs the action and restores
the site collection.

Creating a New Site Collection
To create new site collection, use the New-SPSite cmdlet. This cmdlet has two
required parameters: Url and OwnerAlias. You can specify a template with the
Template parameter. It is also possible to specify a content database to use with the
ContentDatabase parameter.

Here is an example of creating a new site collection:

PS > New-SPSite -Url http://SPServer01:5077 `

>> -OwnerAlias powershell\administrator -Template "STS#0"

Url

http://spserver01:5077

Here, we point the URL to the root of an existing web application, set the owner
for the site collection, and specify a template. The template name might look a little
strange, but if you take a quick peek with the Get-SPWebTemplate cmdlet, you will
see which template we are using.

83Chapter 4: Managing SharePoint 2010 with Windows PowerShel l

Removing Site Collections in SharePoint 2010
The Remove-SPSite cmdlet completely deletes an existing site collection and all
sites. The cmdlet supports the GradualDelete switch parameter, which removes the
site collection gradually, reducing system load. This parameter is recommended for
deleting large sites.

PS > Remove-SPSite -Identity http://SPServer01:5077 -GradualDelete -Confirm:$False

In this example, we delete the new site collection that we previously created. We
also add the GradualDelete switch parameter and set the Confirm switch parameter
to $False so that no confirmation is required.

Managing SharePoint 2010 Sites
Finally, let’s take a look at the cmdlets used to manage sites in SharePoint 2010. All the
cmdlets for managing sites in SharePoint 2010 use the SPWeb noun.

PS > Get-Command -Noun SPWeb

CommandType Name Definition

----------- ---- ----------

Cmdlet Export-SPWeb Export-SPWeb [-Identity] <SPWebPipeBi

Cmdlet Get-SPWeb Get-SPWeb [[-Identity] <SPWebPipeBind

Cmdlet Import-SPWeb Import-SPWeb [-Identity] <SPWebPipeBi

Cmdlet New-SPWeb New-SPWeb [-Url] <String> [-Language

Cmdlet Remove-SPWeb Remove-SPWeb [-Identity] <SPWebPipeBi

Cmdlet Set-SPWeb Set-SPWeb [-Identity] <SPWebPipeBind>

Let’s look at how to use each of these, starting with New-SPWeb.

Creating Sites in SharePoint 2010
The New-SPWeb cmdlet creates a new site in an existing site collection. The only parameter
that is required is the URL, which must be in an existing site collection and unique.
You can also specify the language, site template, name, and description, as well as set
unique permissions, add the site to the parent site’s Quick Launch bar, and set the top
navigation bar options.

Here’s an example of creating a new site:

PS > New-SPWeb -Url http://SPServer01/NewSite -Template "STS#0" `

>> -Name "New Site" -Description "My New Site" -AddToTopNav -UseParentTopNav

Url

http://spserver01/NewSite

84 PowerShel l for Microsoft SharePoint 2010 Administrators

In this example, we set the template to use. Next, we specify the name and
description of the site. Finally, we use the AddToTopNav switch parameter to add the
site to the top-level navigation bar and the UseParentTopNav switch parameter to
specify that the site uses the same top-level navigation bar as the parent site.

NOTE If you do not set a template when creating the new site, you can add it later, either in the
browser or with the Set-SPWeb cmdlet.

Configuring Sites in SharePoint 2010
The Set-SPWeb cmdlet lets you configure existing sites in SharePoint 2010. The
following example changes the description of an existing site.

PS > Get-SPWeb http://SPServer01/NewSite | Select-Object -Property Description

Description

My New Site

PS > Get-SPWeb http://SPServer01/NewSite |

>> Set-SPWeb -Description "A New Description"

PS > Get-SPWeb http://SPServer01/NewSite | Select-Object -Property Description

Description

A New Description

First, we use Get-SPWeb and pipe the object to the Select-Object cmdlet to
retrieve the current value of the Description property. We then use the Set-SPWeb
cmdlet to change the site’s description. Finally, we verify that the change occurred by
retrieving the site’s description again.

Exporting and Importing Sites in SharePoint 2010
With the Export-SPWeb cmdlet, you can export a site, as follows:

PS > Export-SPWeb -Identity http://SPServer01/NewSite `

>> -Path C:\Backup\spWebBackup.bak

This example exports an entire site to a backup file. It is also possible to export
specific content from a site, such as lists, document libraries, and even list items. You
use the ItemUrl parameter to export lists or list items from a site. Here is an example
of exporting a list called Calendar from a site:

PS > Export-SPWeb -Identity http://SPServer01/NewSite `

>> -ItemUrl "Lists/Calendar" -Path C:\Backup\spWebCalendar.bak

85Chapter 4: Managing SharePoint 2010 with Windows PowerShel l

The Export-SPWeb cmdlet also supports the IncludeUserSecurity switch
parameter, which allows you to include access control lists for all items.

By default, Export-SPWeb exports the last major version of a list item, but you can
change this by setting the IncludeVersions parameter to include the current version,
last major and minor version, or all versions of each item.

Once you have an export file, you can use the Import-SPWeb cmdlet to import it
into a site. Importing a site works as long as you specify a site collection that contains
a matching template; otherwise, an error occurs.

In the following example, we will delete the Calendar list in SharePoint 2010 and
perform an import with the Import-SPWeb cmdlet. Figure 4-3 shows how to delete
a list in SharePoint 2010.

Figure 4-3. Deleting the Calendar list

Now that the list is removed, we can go ahead and run Import-SPWeb:

PS > Import-SPWeb -Identity http://SPServer01/NewSite `

>> -Path C:\Backup\spWebCalendar.bak

86 PowerShel l for Microsoft SharePoint 2010 Administrators

The Import-SPWeb cmdlet also supports the UpdateVersions parameter, which
allows you to specify how to handle items that already exist in a list. The possible
values are Append, Overwrite, and Ignore.

Removing Sites in SharePoint 2010
The Remove-SPWeb cmdlet removes a specific site from SharePoint 2010. If the top-level
site is deleted, the site collection is also removed. Here is an example of running this
cmdlet:

PS > Remove-SPWeb -Identity http://SPServer01/NewSite -Confirm:$false

Summary
This chapter covered how to use the cmdlets in Windows PowerShell to manage the
SharePoint 2010 environment. We began with content database and web application
management. As you saw, you can use cmdlets to create, manage, and remove content
databases and web applications with Windows PowerShell. Then we covered the
basics of site collection and site management with Windows PowerShell. We included
examples of creating, configuring, removing, and backing up sites and site collections.

In the next chapter, we will dig deeper into the core functionality of Windows
PowerShell. We’ll look at items such as variables, functions, operators, scripts, and
remoting.

87

CHAPTER 5 Variables, Arrays,
and Hashtables

88 PowerShel l for Microsoft SharePoint 2010 Administrators

This chapter covers the use of variables, arrays, and hashtables. First, we will
demonstrate how to work with variables in Windows PowerShell, including
creating, setting, and removing variables. We will also take a brief look at

different data types. Then we will move on to using arrays and hashtables in Windows
PowerShell.

Variables in Windows PowerShell
Windows PowerShell, like most other scripting languages, stores values in variables.
Variables are represented by single-word text strings that begin with the dollar sign ($).
Windows PowerShell supports four types of variables: user-created, automatic, preference,
and environment variables.

Working with Variables
The simplest way to create a variable is by using the assignment operator = to set a
variable to a specific value. The following example creates the variable $string and
assigns it the value My String.

PS > $string = "My String"

You can also use the New-Variable cmdlet to create variables. This cmdlet offers
some additional functionality, such as adding a description, setting the variable to
read-only or constant, and setting a specific scope for a variable. Here is an example:

PS > New-Variable -Name string -Value "My String" `

>> -Description "Created using New-Variable" -Option ReadOnly -Force

This creates the variable $string and sets the value to My String. We also specify
a description, use the Option parameter to set the variable to ReadOnly, and use the
-Force switch parameter since the variable already exists.

If we try to assign a new value to the variable using the assignment operator, an
error occurs since the variable is set to read-only.

PS > $string = "New Value"

Cannot overwrite variable string because it is read-only or constant.

At line:1 char:8

+ $string <<<< = "New Value"

 + CategoryInfo : WriteError: (string:String) [],

SessionStateUnauthorizedAccessException

 + FullyQualifiedErrorId : VariableNotWritable

Instead, we can use the Set-Variable cmdlet with the -Force switch parameter
to set a new value. We also change the Option parameter from ReadOnly to None.

PS > Set-Variable -Name string -Value "New Value" -Option None -Force

89Chapter 5: Variables, Arrays, and Hashtables

The Get-Variable cmdlet is used to retrieve variables, as follows:

PS > Get-Variable -Name string

Name Value

---- -----

string New Value

This example returns an object of the type System.Management.Automation
.PSVariable, which contains properties that describe the variable. If you want to
display only the variable’s value, use the -ValueOnly switch parameter.

PS > Get-Variable -Name string -ValueOnly

New Value

This example returns an object of the type System.String. This corresponds to
just typing a dollar sign ($) followed by the variable’s name:

PS > $string

New Value

You can display additional information about a variable by using the Get-Variable
cmdlet and sending the object to the Format-List cmdlet.

PS > Get-Variable -Name string | Format-List

Name : string

Description : Created using New-Variable

Value : New Value

Visibility : Public

Module :

ModuleName :

Options : None

Attributes : {}

To clear the value of a variable, use the Clear-Variable cmdlet.

PS > Clear-Variable -Name string

When using the Clear-Variable cmdlet, the variable’s value is set to null. You can
also set a variable to null using the assignment operator.

PS > $string = $null

To delete a variable, use the Remove-Variable cmdlet.

PS > Remove-Variable -Name string

NOTE You cannot delete variables set as constants or variables owned by the system.

90 PowerShel l for Microsoft SharePoint 2010 Administrators

Data Types
When you use the assignment operator = to set a variable to a specified value, Windows
PowerShell automatically assigns the best-suited data type for the given value. In our
first example, we used a simple string as input, which stored an object of the type
System.String in a variable. In this example, we set a variable to a numeric value:

PS > $int = 10

We can use the GetType() method with the FullName property to find out the
variable’s data type.

PS > $int.GetType().FullName

System.Int32

This shows that the variable $int is of the type System.Int32, which represents
a 32-bit integer.

If we use a number that is too large for a 32-bit integer, a different data type will be
used.

PS > $int64 = 10000000000000

PS > $int64.GetType().FullName

System.Int64

If the value is a decimal number, the System.Double data type will be used.

PS > $decimal = 1.2

PS > $decimal.GetType().FullName

System.Double

Rather than letting Windows PowerShell assign the data type, you can specify the
type for a variable. To assign a specific data type to a variable, enclose the data type’s
name in square brackets before the variable name. If the data type is not at the root of
the System namespace, you must type the data type’s full name; otherwise, you can
omit the System part of the name, as shown in this example:

PS > [uri]$url = "http://SPServer01"

PS > $url.GetType().FullName

System.Uri

Here, we use an URL as value, but rather than letting Windows PowerShell assign
a data type we assigned it a specific data type, giving us a completely different type of
object. The type System.Uri is an object representation of a uniform resource identifier
(URI), which, according to Microsoft Developer Network (MSDN), is “a compact
representation of a resource available to your application on the intranet or Internet.”

The next example demonstrates how to assign the type System.Int32 to a variable.

PS > [int32]$val = 32

PS > $val

32

91Chapter 5: Variables, Arrays, and Hashtables

Since we assigned a fixed type to the variable, only values within the permitted
range for the type are allowed. If we try to add a string value to the typed variable, an
error occurs.

PS > [int32]$val = "http://SPServer01"

Cannot convert value "http://SPServer01" to type "System.Int32". Error: "Input

string was not in a correct format."

At line:1 char:12

+ [int32]$val <<<< = "http://SPServer01"

 + CategoryInfo : MetadataError: (:) [],

ArgumentTransformationMetadataException

 + FullyQualifiedErrorId : RuntimeException

Windows PowerShell also supports a number of type accelerators (also known as type
shortcuts). The type accelerators allow you to use short name syntax for commonly used
.NET types. For instance, instead of typing [System.Xml.XmlDocument], you can
simply type [xml]. Table 5-1 shows some of the most common type accelerators.

Type Description Example
[string] String of Unicode

characters
[string]"Hi"

[int] 32-bit integer [int32]12

[long] 64-bit integer [int64]1200000

[char] Unicode character [char]34

[bool] True or false value [bool]$false

[byte] 8-bit integer [byte]255

[decimal] Decimal number [decimal]12.44

[double] Double-precision decimal
number

[double]12.44

[float] Single-precision floating
number

[float]12.44

[array] An array [array]1,2,3

[hashtable]Hashtable [hashtable]@{"Name"="Value"}

[xml] XML document [xml]"<name>Sergey</name>"

[adsi] Active Directory service
interface

[adsi] "LDAP://

DC=PowerShell,DC=nu"

[wmi] Type accelerator for
ManagementObject

[wmi]("Win32_ComputerSystem

.Name='SPServer01'")

Table 5-1. Common Windows PowerShell Type Accelerators

92 PowerShel l for Microsoft SharePoint 2010 Administrators

To find out the type accelerator’s corresponding .NET type, use the FullName
property.

PS > ([string]).FullName

System.String

PS > ([xml]).FullName

System.Xml.XmlDocument

PS > ([adsi]).FullName

System.DirectoryServices.DirectoryEntry

NOTE Type accelerators are considered before regular type lookup. Regular type lookup searches
for the name typed within square brackets without prepending System. If that fails, System is
prepended. For accelerated types in the System namespace, the accelerator ensures that you
won’t pick up some global (not in any namespace) type.

Properties and Methods
Since what is actually stored in a variable is a .NET object, you can use all of its
methods and properties. You can use the Windows PowerShell Get-Member cmdlet to
retrieve all members of an object. Let’s store an object of the type System.String in a
variable and explore its methods and properties.

PS > [string]$url = "http://SPServer01"

PS > $url | Get-Member

The Get-Member cmdlet returns information about the properties and methods of
the object, as well as its type, as shown in Figure 5-1.

Now that we know which methods and properties the object supports, we can use
them to retrieve information and manipulate the object. For example, to find out how
many characters the string contains, type the following:

PS > $url.Length

17

The output tells us that the string’s length is 17 characters. We can manipulate the
string through the various methods available. For example, we could change all the
characters to uppercase, like this:

PS > $url.ToUpper()

HTTP://SPSERVER01

Notice that method calls in Windows PowerShell end with parentheses, as is common
syntax for method invocation in many scripting and programming languages. If a method
accepts parameters, those need to be specified within the parentheses. Let’s look at the
Replace() method of the System.String type as an example:

PS > $url.Replace("http://","https://")

https://SPServer01

93Chapter 5: Variables, Arrays, and Hashtables

When you use the Replace() method, you need to provide additional information
to the method telling it what to replace and what to replace it with. A simple way of
finding information about a method is by calling the method without the parentheses.

PS > $url.Replace

Figure 5-2 shows the information returned for the Replace() method.

Figure 5-1. Using the Get-Member cmdlet to retrieve methods and properties

Figure 5-2. Getting the Replace() method definition

94 PowerShel l for Microsoft SharePoint 2010 Administrators

Another resource is the MSDN library (http://msdn.microsoft.com), which provides
information about the classes in .NET, including the methods and properties they
support. To get information about the Replace() method, search for “System.String
Replace.”

In the following example, we store the output from the Get-SPWeb cmdlet in a
variable and use the various methods and properties to work with the stored object. We
also use the value stored in the $url variable as input.

PS > $url = "http://SPServer01"

PS > $spWeb = Get-SPWeb -Identity $url

When we type the variable’s name, the default properties of the object are displayed
in the console, as shown here:

PS > $spWeb

Url

http://spserver01

To display all of the object’s properties, pipe the object to the Format-List cmdlet,
as shown in this example:

PS > $spWeb | Format-List

Let’s take a closer look at the methods and properties available on the SPWeb object.

PS > $spWeb | Get-Member

Figure 5-3 shows the available methods and properties.
You can retrieve values of specific properties by using standard property

notation—appending a property’s name to the object-containing variable with a dot.

PS > $spWeb.Url

http://spserver01

PS > $spWeb.Title

Home

PS > $spWeb.Created

Sunday, March 28, 2010 11:44:11 PM

You can also use a pipeline and the Select-Object cmdlet to retrieve specific
properties from a site.

PS > $spWeb | Select-Object -property IsRootWeb, WebTemplate, WebTemplateID

IsRootWeb WebTemplate WebTemplateId

--------- ----------- -------------

 True STS 1

95Chapter 5: Variables, Arrays, and Hashtables

In the example, we select the IsRootWeb property, which tells us if the current
site is the root site of a site collection, and the WebTemplate and WebTemplateId
properties, which indicate the site definition and configuration (template) used to
create the site (in this case, STS1, which corresponds to the Blank Site template).

Our new variable $spWeb is an instance of the Microsoft.SharePoint.SPWeb
type, which lets us access the broad variety of methods and properties offered by this
type. In the next example, we use this object’s EnsureUser method to check if a specific
login name belongs to a valid user of a SharePoint site.

PS > $spWeb.EnsureUser("powershell\sezel")

UserLogin DisplayName

--------- -----------

POWERSHELL\sezel Sergey Zelenov

Since the user sezel is not currently a known user of the site, the user is added to
the site’s User Info list.

You can also modify the site through the methods and properties available. In
Chapter 4, we used the Set-SPWeb cmdlet to change the description of a site. This can
also be done directly through the Description property available on the object.

PS > $spWeb.Description

Home

PS > $spWeb.Description = "Changed through PowerShell"

Figure 5-3. Methods and properties of an SPWeb object

96 PowerShel l for Microsoft SharePoint 2010 Administrators

PS > $spWeb.Update()

PS > $spWeb.Description

Changed through PowerShell

In the example, we begin by retrieving the current description. Then we assign
a new string value to the Description property, and finally, we use the Update()
method to commit the changes we made. When we retrieve the object again, the
description is changed.

When you are finished working with an object, use the Dispose() method to
ensure that the object is disposed of correctly.

PS > $spWeb.Dispose()

This is good practice because SPWeb, SPSite, and SPSiteAdministration objects
may take up large amounts of memory. We will discuss disposing objects in more detail
in Chapter 7.

Automatic Variables
The Windows PowerShell automatic variables are fixed variables that store state
information. Table 5-2 describes these variables.

Variable Contents
$$ The last token in the last line received by the session
$? True or false, depending on the last performed

operation
$^ The first token from the last line received by the session
$_ The current object in the pipeline object
$args An array of values passed to a function or a script
$ConsoleFileName The path of the console file that was most recently used

in the session
$Error An array of error objects representing the most recent

error that occurred
$Event A PSEventArgs object that represents the event that is

being processed
$EventSubscriber A PSEventSubscriber object that represents the event

subscriber of the event that is being processed
$ExecutionContext An EngineIntrinsics object that represents the

execution context of the Windows PowerShell host
$false Boolean false
$foreach The enumerator of a foreach loop
$Home User’s home directory

Table 5-2. Windows PowerShell Automatic Variables (continued)

97Chapter 5: Variables, Arrays, and Hashtables

Table 5-2. Windows PowerShell Automatic Variables

Variable Contents
$Host Information regarding the current host
$input An enumerator that contains the input passed to a

function
$LastExitCode The last exit code of the last program that was run
$Matches Result of the last successful regular expression match
$MyInvocation Information regarding the context under which the

script, function, or script block was run
$NestedPromptLevel The current prompt level
$NULL An empty value
$PID The process identifier of the process that is hosting

the current Windows PowerShell session
$Profile The full path to the Windows PowerShell profile for

the current user
$PSBoundParameters A dictionary of the active parameters and their current

values
$PsCmdlet The cmdlet that is being run
$PsCulture The name of the culture currently in use
$PsDebugContext Information about the debugging environment while

debugging
$PsHome The full path of the installation directory of Windows

PowerShell
$PsScriptRoot The directory from which the script module is being

executed
$PsUICulture The name of the user interface culture that is currently

in use in the operating system
$PsVersionTable A read-only hashtable containing details about the

version of Windows PowerShell
$Pwd The current directory
$ShellID Identifier of the current shell
$SourceArgs Objects that represent the event arguments of the

current event
$SourceEventArgs The first object that represents the first event argument

that derives from EventArgs of the event that is being
processed

$This Reference to the current object in script methods and
properties

$true Boolean true

98 PowerShel l for Microsoft SharePoint 2010 Administrators

You can list the variables in Windows PowerShell by using the Get-ChildItem or
Get-Variable cmdlet.

PS > Get-ChildItem Variable:

PS> Get-Variable

These commands return both automatic variables and user-created variables.
To display the value of a specific automatic variable, simply type the automatic

variable’s name.

PS > $PSHOME

C:\Windows\System32\WindowsPowerShell\v1.0

It is also possible to use the value of a variable as input to cmdlets in Windows
PowerShell. In the next example, we use the value of the $PsHome variable with the
Get-ChildItem cmdlet to retrieve all items from the Windows PowerShell home
directory.

PS > Get-ChildItem $PSHOME

When working with pipelines and loops in Windows PowerShell, you use the
automatic variable $_ to handle the current object in the pipeline. In Chapter 3, we
used the Select-Object cmdlet and created a calculated property using a hashtable
and the $_ variable. Other cmdlets support the $_ variable. Chapter 7 shows examples
of its use with the Where-Object and ForEach-Object cmdlets.

You can get more information about automatic variables by using the Get-Help
cmdlet.

PS > Get-Help about_Automatic_variables

Preference Variables
Windows PowerShell includes a set of preference variables that let you customize its
behavior. The preference variables affect the environment and how commands behave.
Table 5-3 describes the preference variables available in Windows PowerShell.

You can modify the preference variables by changing their value. For example, the
following example changes the warning preference to silently continue.

PS > $WarningPreference = "SilentlyContinue"

PS > $WarningPreference

SilentlyContinue

When you modify a preference variable in Windows PowerShell, the change affects
only the current session. In order to make a persistent change to a preference variable,
add the modification to a profile script, as this example shows:

'$WarningPreference = "SilentlyContinue"' | Out-File $PSHOME\profile.ps1 -Append

99Chapter 5: Variables, Arrays, and Hashtables

Variable Description

$ConfirmPreference Sets the level of impact that operations have
before requesting confirmation: none, low,
medium, or high

$DebugPreference Controls how Windows PowerShell handles
debugging messages written by a script or
a cmdlet

$ErrorActionPreference Sets the default error-handling action

$ErrorView Controls how Windows PowerShell should
output errors to the shell

$FormatEnumerationLimit Determines how many enumerated items
are included in a display

$LogCommandHealthEvent Logs errors and exceptions in command
initialization and processing

$LogCommandLifeCycleEvent Logs the start and stop of a command in a
pipeline

$LogEngineHealthEvent Logs session error and failures

$LogEngineLifeCycleEvent Logs the opening and closing of a session

$LogProviderLifeCycleEvent Logs adding and removing of providers in
Windows PowerShell

$LogProviderHealthEvent Logs provider errors

$MaximumAliasCount Determines how many aliases are permitted
in the current session

$MaximumErrorCount Determines how many errors are saved in
the error history

$MaximumFunctionCount Determines how many functions are
permitted in the current session

$MaximumHistoryCount Determines how many commands are saved
in the command history for the current
session

$MaximumVariableCount Determines how many variables are
permitted in the current session

$OFS Output field separator—specifies the
character that an element in an array is
separated with when the array is converted
to a string

Table 5-3. Windows PowerShell Preference Variables (continued)

100 PowerShel l for Microsoft SharePoint 2010 Administrators

A profile script executes each time Windows PowerShell starts. Profile scripts in
Windows PowerShell are described in Chapter 8.

Environment Variables
Environment variables store information regarding the operating system environment.
You can display the environment variables available using the Get-ChildItem cmdlet.

PS > Get-ChildItem env:

Here’s how to retrieve a specific environment variable:

PS > Get-ChildItem env:COMPUTERNAME

Name Value

Variable Description

$OutputEncoding Determines the default character encoding
used by Windows PowerShell

$ProgressPreference Determines how Windows PowerShell
responds to progress updates generated by
a script

$PSEmailServer Specifies the default e-mail server used by
Windows PowerShell cmdlets

$PSSessionApplicationName Specifies the default application name
for a remote command that uses WS-
Management technology

$PSSessionConfigurationName Specifies the default session configuration
that is used for PSSessions created in the
current session

$PSSessionOption Establishes the default values for advanced
user options in a remote session

$VerbosePreference Controls how Windows PowerShell handles
verbose messages written by a script or a
cmdlet

$WarningPreference Controls how Windows PowerShell handles
warning messages written by a script or a
cmdlet

$WhatIfPreference Determines if WhatIf is automatically
enabled for every command that supports it

Table 5-3. Windows PowerShell Preference Variables

101Chapter 5: Variables, Arrays, and Hashtables

---- -----

COMPUTERNAME SPSERVER01

To display the value of the environment variable, add its name.

PS > $env:COMPUTERNAME

SPSERVER01

As with other variables, you can modify an environment variable by changing its
value, as in this example:

PS > $env:COMPUTERNAME = "NewName"

PS > $env:COMPUTERNAME

NewName

As with preference variables, all changes made to the environment variables
using Windows PowerShell affect only the current session. To permanently change
environment variables, add the modifications to a profile script.

NOTE You can also permanently change environment variables through the
SetEnvironmentVariable() static method available from the System.Environment
class.

Arrays in Windows PowerShell
An array is a container that is used for storing a collection of data elements. An array in
Windows PowerShell can contain objects of all types supported by .NET. All arrays are
origin zero, meaning that the first element in an array is always at index 0, the second
element is at index 1, and so on. Many cmdlets in Windows PowerShell return output
in the form of an array.

Here is an example of creating a simple array containing numeric values:

PS > $array = 1,2,3

PS > $array

1

2

3

You can also create an array using the array subexpression operator @, as shown here:

PS > $array = @(1,2,3)

You can access specific elements in arrays. To retrieve the first element, type the
following:

PS > $array[0]

1

102 PowerShel l for Microsoft SharePoint 2010 Administrators

Notice how we use the value 0 to retrieve the first element, since the indexing
of array elements in Windows PowerShell starts with zero. If we used 1, the second
element would be returned.

You can change an element in an array by assigning it a new value, as in this example:

PS > $array[1] = "Two"

PS > $array

1

Two

3

Use the += operator to add an element to an array.

PS > $array += "Four"

PS > $array

1

Two

3

Four

You can also count the number of elements in an array by using the Count property.

PS > $array.Count

4

NOTE The Count property used in this example is actually an alias for the System.Array
Length property. It is available through the types.ps1.xml file, which is a built-in XML file that adds
several elements to the .NET Framework types in Windows PowerShell.

When cmdlets return more than one result, Windows PowerShell automatically
wraps the result into an array. In the following example, we store the output of the
Get-SPWebTemplate cmdlet in a variable and use the Count property to check how
many elements the array contains.

PS > $SPWebTemplate = Get-SPWebTemplate

PS > $SPWebTemplate.Count

50

Again, if we want to retrieve the first element, we can simply type the following:

PS > $SPWebTemplate[0]

Name Title LocaleId Custom

---- ----- -------- ------

GLOBAL#0 Global template 1033 False

103Chapter 5: Variables, Arrays, and Hashtables

You can also use ranges when retrieving elements in an array.

PS > $SPWebTemplate[0..2]

Name Title LocaleId Custom

---- ----- -------- ------

GLOBAL#0 Global template 1033 False

STS#0 Team Site 1033 False

STS#1 Blank Site 1033 False

It is even possible to use negative numbers when working with arrays. To retrieve
the last element in the array, use -1.

PS > $SPWebTemplate[-1]

Name Title LocaleId Custom

---- ----- -------- ------

visprus#0 Visio Process Repository 1033 False

You will see a lot more examples on working with arrays in the upcoming chapters.

Hashtables in Windows PowerShell
Windows PowerShell also includes hashtables, or associative arrays. Hashtables use
key/value pairs instead of a numeric index to access the elements.

You can create a hashtable by placing one or more key/value pairs inside @{}.

PS > $hashTable = @{"FirstName"="Jean-Luc";"LastName"="Picard"}

PS > $hashTable

Name Value

---- -----

FirstName Jean-Luc

LastName Picard

You can access specific elements in a hashtable in two ways: using dot notation or
by typing the key within square brackets. Here’s how to use dot notation:

PS > $hashTable.FirstName

Jean-Luc

PS > $hashTable.LastName

Picard

104 PowerShel l for Microsoft SharePoint 2010 Administrators

And here’s the square bracket form:

PS > $hashTable["FirstName"]

Jean-Luc

PS > $hashTable["LastName"]

Picard

You can also send a hashtable down a pipeline and use the Select-Object cmdlet
to retrieve specific elements.

PS > $hashTable | Select @{Name="Name";Expression={$_["FirstName"]}}

Name

Jean-Luc

To change a key/value pair in a hashtable, you can use either form to access it and
assign the new value, as in these examples:

PS > $hashTable.FirstName = "William"

PS > $hashTable["LastName"] = "Riker"

PS > $hashTable

Name Value

---- -----

LastName Riker

FirstName William

You can also store multiple hashtables in an array. In this example, we store two
hashtables in an array.

PS > $hashTable = @{"FirstName"="Jean-Luc";"LastName"="Picard"},

@{"FirstName"="William";"LastName"="Riker"}

PS > $hashTable

Name Value

---- -----

LastName Picard

FirstName Jean-Luc

LastName Riker

FirstName William

105Chapter 5: Variables, Arrays, and Hashtables

When multiple hashtables are in an array, to access elements in the hashtable, you
need to index into a specific element; otherwise, Windows PowerShell will not know
which element you want to retrieve.

PS > $hashTable[0]

Name Value

---- -----

LastName Picard

FirstName Jean-Luc

PS > $hashTable[0].FirstName

In this example, we retrieve the first hashtable in the array and return the key/
value pair.

Summary
In this chapter, we covered the core functionality of Windows PowerShell. The first
part of the chapter demonstrated how to use variables to store objects in Windows
PowerShell, and we also took a quick dive through methods and properties. Then we
looked at arrays and ways of working with them. The last part of the chapter covered
hashtables and showed examples of how to use them in Windows PowerShell.

This page intentionally left blank

107

CHAPTER 6 Operators

108 PowerShel l for Microsoft SharePoint 2010 Administrators

Windows PowerShell supports several types of operators, including some
interesting and powerful ones that are not typically found in scripting
or programming languages. This chapter covers the operators that

you will most commonly use when working with Windows PowerShell and
SharePoint 2010.

Arithmetic Operators
The basic arithmetic operators include those to add, multiply, subtract, divide, and
calculate the remainder of a division. Table 6-1 lists these operators.

Let’s take a closer look at the + operator. To add the values 1 and 5 together, you
could type this:

PS > 1 + 5

6

To add a string with a numeric value, use this form:

PS > "String" + 5String5

It is also possible to add multiple string values to build up a single string. This
example uses the + operator to build up a URL from three strings:

PS > "http://" + "SPServer01" + "/MySite"

http://SPServer01/MySite

You can also add string objects stored in variables together.

PS > $url = "http://SPServer01"

PS > $web = "MySite"

PS > $url + "/" + $web

http://SPServer01/MySite

Operator Description

+ Adds two values

− Subtracts one value from another

* Multiplies two values

/ Divides one value by another

% Returns the remainder from a division

Table 6-1. Windows PowerShell Arithmetic Operators

109Chapter 6: Operators

However, it is not possible to add a string to a numeric value.

PS > 1 + ";#" + "Item"

Cannot convert value "String" to type "System.Int32".

Error: "Input string was not in a correct format."

At line:1 char:4

+ 1 + <<<< "String"

 + CategoryInfo : NotSpecified: (:) [], RuntimeException

 + FullyQualifiedErrorId : RuntimeException

Windows PowerShell interprets the first argument as an instance of the type
System.Int32. When we try to add a System.String value to a System.Int32
value, an error occurs. Windows PowerShell expects an argument of the type System
.Int32, and it is not possible to convert a System.String value containing characters
other than numeric ones. The following is the correct way to add the values:

PS > "1" + ";#" + "Item"

1;#Item

You can also cast the numeric value using the [string] type literal, which is a
PowerShell alias for the System.String type.

PS > [string]1 + ";#" + "Item"

1;#Item

The value on the left side defines the type of the whole operation. You can add a
number to a string, since a number can be converted to a string value, as shown in this
example:

PS > "#Item" + 1

#Item1

Here are examples of using the other arithmetic operators:

 Use the – operator to subtract numeric values:

PS > 5 - 4

1

 The - operator also works with negative numbers:

PS > -1 - 1

-2

 Use the * operator to multiply values:

PS > 5 * 5

25

110 PowerShel l for Microsoft SharePoint 2010 Administrators

 You can also multiply string values with a numeric value:

PS > "Hello" * 5

HelloHelloHelloHelloHello

 Divide numeric values with the / operator:

PS > 9 / 3

3

 Use the modulus (%) operator to calculate remainders:

PS > 10 % 3

1

PS > 6 % 2

0

Assignment Operators
Assignment operators are used to assign one or more values to a variable, modify
values in a variable, or add values to a variable. Table 6-2 shows the assignment
operators available in Windows PowerShell.

Operator Description

= Sets the value of a variable to the specified value

+= Increases the value of a variable by the specified value or appends
to the existing value

−= Decreases the value of a variable by the specified value

*= Multiplies the value of a variable by the specified value or appends
the specified value to the existing value

/= Divides the value of a variable by the specified value

%= Divides the value of a variable by the specified value and assigns
the remainder to the variable

++ Increases the value by one

−− Decreases the value by one

Table 6-2. Windows PowerShell Assignment Operators

111Chapter 6: Operators

The most common assignment operator is the equal operator (=). You can use the
equal operator to assign a value to a variable.

PS > $variable = 1

PS > $variable

1

You can also assign the same value to multiple variables.

PS > $variable1 = $variable2 = 3

PS > $variable1

3

PS > $variable2

3

Here are examples of using some of the other assignment operators:

 To increase the value of a variable by a specific value, use the += operator:

PS > $variable = "Windows"

PS > $variable += " "

PS > $variable += "PowerShell"

PS > $variable

Windows PowerShell

 To decrease a variable with a specific value, use the -= operator:

PS > $variable = 5

PS > $variable -= 3

PS > $variable

2

 To multiply a variable with a specific value, use the *= operator:

PS > $variable = "-"

PS > $variable *= 8

PS > $variable

 To increase a numeric value by one, use the ++ operator:

PS > $variable = 1

PS > $variable ++

PS > $variable

2

 To decrease a numeric value by one, use the -- operator:

PS > $variable = 0

PS > $variable --

PS > $variable

-1

112 PowerShel l for Microsoft SharePoint 2010 Administrators

Comparison Operators
The comparison operators are used to compare values, as well as to find values that
match specific patterns. Table 6-3 lists the comparison operators available in Windows
PowerShell.

The -eq operator returns True or an array of matching values if it can match the
value on the right with one or more values on the left. The operator returns True if an
exact match is made.

PS > "http://SPServer01" -eq "http://SPServer01"

True

PS > "http://SPServer01" -eq "http://SPServer01/Site"

False

In the first example, we use the –eq operator to compare two identical strings. In
the second example, we add a few lines to the value on the right. Since the strings are
not identical, False is returned.

We can also use the –eq operator to match an argument on the right side with an
array of values on the left.

PS > "http://SPServer01", "http://SPServer02" -eq "http://SPServer02"

http://SPServer02

Operator Description

-eq Equal to

-ne Not equal to

-gt Greater than

-lt Less than

-le Less than or equal to

-ge Greater than or equal to

-like Match using the wildcard character (*)

-notlike Does not match using the wildcard character (*)

-match Evaluates a regular expression against the operand on the left;
returns True if the match is successful

-notmatch Evaluates a regular expression against the operand on the left;
returns True if the match is not successful

-replace Replaces all or part of a value with the specified value using
regular expressions

Table 6-3. Windows PowerShell Comparison Operators

113Chapter 6: Operators

The -ne operator returns True if the left value and the right value are not identical.
If the left side of the operation contains multiple values, the operator returns ones that
do not match the value on the right.

PS > "http://SPServer01" -ne "http://SPServer01"

False

PS > "http://SPServer01","http://SPServer02" -ne "http://SPServer01"

http://SPServer02

The -gt operator returns True if the left value is greater than the right value. The
-ge operator returns True if the left value is greater than or equal to the right value.

PS > (Get-SPSiteAdministration -Identity http://SPServer01).UsersCount

9

PS > (Get-SPSiteAdministration -Identity http://SPServer01).UsersCount -ge 9

True

PS > (Get-SPSiteAdministration -Identity http://SPServer01).UsersCount -gt 9

False

In this example, we use the Get-SPSiteAdministration cmdlet to retrieve
the number of users of a site. In this case, there are nine users. We then use the –ge
operator to check if the number of users is greater than or equal to nine, which returns
True. Next, we check if the number of users is greater than nine, which returns False.

To see if the left value is less than the right value, use the -lt operator. The –le
operator is for less-than or equal-to comparisons.

PS > (Get-SPSiteAdministration -Identity http://SPServer01).UsersCount -lt 9

False

PS > (Get-SPSiteAdministration -Identity http://SPServer01).UsersCount -le 9

True

The –like and –notlike operators are similar to the –eq and –ne operators, but
instead of matching exact values, they allow wildcards to be used.

PS > "http://SPServer01" -like "http://SPServer01"

True

PS > "http://SPServer01/Site" -like "http://SPServer01*"

True

In the first example, we use the –like operator to compare two identical strings.
Since the strings match, True is returned. In the second example, we use a wildcard
character when we compare the values. The wildcard character matches any given
character. If the left side of the operation contains multiple values, the operator returns
matching values, rather than True or False, as shown in the next example.

PS > "http://SPServer01/internal/site1",

>> "http://SPServer01/external/site1" -like "*external*"

>>

http://SPServer01/external/site1

114 PowerShel l for Microsoft SharePoint 2010 Administrators

For case-sensitive evaluation, use the –clike operator, as demonstrated here:

PS > "http://SPServer01" -clike "http://SPServer01"

True

PS > "http://SPServer01" -clike "http://SPSERVER01"

False

The following examples demonstrate how to use the –notlike operator.

PS > "http://SPServer01" -notlike "http://SPServer01"

False

PS > "http://SPServer01/Site" -notlike "http://SPServer01"

True

PS > "http://SPServer01/Site" -notlike "http://SPServer01*"

False

If the left side of the operation contains multiple values, the operation returns
values that do not match, as shown here:

PS > "http://SPServer01/internal/site1",

>> "http://SPServer01/external/site1" -notlike "*external*"

>>

http://SPServer01/internal/site1

The –match and –notmatch operators try to match one or more of the set of string
values on the left side of the operation using regular expressions. Regular expressions
are a very powerful means of pattern matching (not specific to PowerShell or any other
technology), which allow you to create very complex and effective comparisons. Here
are some examples:

 Match http://SPServer01/Site with http://SPServer01:

PS > "http://SPServer01/Site" -match "http://SPServer01"

True

 Match http://SPServer01/Site with a regular expression that checks if the
string starts with http://:

PS > "http://SPServer01/Site" -match "^http://"

True

 Check if http://SPServer01/Site starts with http://, followed by any
number of alphanumeric characters, followed by /, followed by any number of
alphanumeric characters and ends with an e:

PS > "http://SPServer01/Site" -match "^http://\w*/\w*e$"

True

As you can see, it is possible to build up complex match patterns using regular
expressions. Similar to the –clike operator, -cmatch performs case-sensitive matching.

115Chapter 6: Operators

You can also use multiple values on the left side and match against a value on the
right side, as shown in this example:

PS > "http://SPServer01/Site",

>> "http://SPServer01",

>> "http://SPServer02" -match "http://SPServer01"

>>

http://SPServer01/Site

http://SPServer01

This example returns the left values that match the right value.
The -replace operator in Windows PowerShell is used to find and replace substrings

in a string value. It assumes its input is a regular expression. You can use the -replace
operator to search for and replace a specific pattern.

PS > "http://SPServer01/Site" -replace "^http","https"

https://SPServer01/Site

Here, we replace http with https. We use the ^ character to match the beginning
of the original string.

Here is an example that uses a more complex replacement pattern:

PS > "http://SPServer01/Site" -Replace "/{2}\w*/","//SPServer02/"

http://SPServer02/Site

This example compares the string "http://SPServer01/Site" to the specified
pattern and replaces the part of the string that starts with two / characters, contains
any number of alphanumeric characters, and ends with another /.

NOTE Unlike the -replace operator, the Replace() method available through System
.String does not accept regular expressions.

Logical Operators
The logical operators are used to combine expressions, allowing you to check multiple
conditions in one statement. Expressions on the left and the right side of any of these
operators are evaluated (if necessary), converted to Boolean values of True or False,
and then the combination of those values is returned, following the rules of formal
logic. Table 6-4 lists the logical operators supported by Windows PowerShell.

With the -and operator, you can evaluate multiple expressions. If all the
expressions evaluate to true, the Boolean value of True is returned.

PS > (1 -eq 1) -and (2 -eq 2)

True

PS > (1 -eq 1) -and (2 -eq 3)

False

116 PowerShel l for Microsoft SharePoint 2010 Administrators

The first example returns True, since both expressions evaluate to True. The second
example returns False, since the last expression does not evaluate to true.

The –or operator returns True if one or more expressions evaluate to true.

PS > (1 -eq 1) -or (2 -eq 2)

True

PS > (1 -eq 1) -or (2 -eq 3)

True

The -xor operator returns True only if one of the expressions evaluates to true.

PS > (1 -eq 1) -xor (2 -eq 2)

False

PS > (1 -eq 1) -xor (2 -eq 3)

True

The -not operator returns True if the right value evaluates to false.

PS > -not (1 -eq 1)

False

PS > -not (1 -eq 2)

True

PS > !(1 -eq 2)

True

Operator Description

-and Returns True when both left and right hand side expressions
evaluate to true

-or Returns True when an expression on at least one side evaluates
to true

-xor Returns True when left and right side expressions have opposite
values (one is True and the other is False)

-not Changes the Boolean value of the expression that follows it for
the opposite

! Same as -not

Table 6-4. Windows PowerShell Logical Operators

117Chapter 6: Operators

Redirection Operators
By default, Windows PowerShell sends output to the console. However, you can
redirect the output to a file by using the redirection operators, which are listed in
Table 6-5.

To send the output of a cmdlet to a file, use the > operator. The following example
redirects the output of the Get-Command cmdlet to a file named CommandList.txt, and
overwrites the file if it exists.

PS > Get-Command > CommandList.txt

To append content to a file instead of replacing it, use the >> operator:

PS > Get-Command >> CommandList.txt

The 2> operator redirects all errors that occurred. The following command redirects
all errors that occur to a file instead of displaying the error in the PowerShell console,
overwriting the file if it already exists.

PS > Get-ChildItem C:\nofile.txt 2> Errors.txt

To append the errors to the file instead, use the 2>> operator:

PS > Get-ChildItem C:\nofile.txt 2>> Errors.txt

NOTE You can also redirect output to a file using cmdlets that handle redirection, such as
Out-File.

Operator Description

> Sends the output to a file

>> Appends the output to a file

2> Sends errors to a file

2>> Appends errors to a file

2>&1 Sends errors to the success output stream

Table 6-5. Windows PowerShell Redirection Operators

118 PowerShel l for Microsoft SharePoint 2010 Administrators

Type Operators
The type operators are used to find or change the type of an object in Windows
PowerShell. Table 6-6 lists the type operators available.

You can test if an object is a specific type by using the -is operator.

PS > "Hello" -is [System.String]

True

PS > "Hello" -is [System.Int32]

False

In the first example, we check if "Hello" is of the type System.String, which
returns True. In the second example, we check if "Hello" is of the type System
.Int32, which returns False.

To make sure that an object is not a specific type, use the -isnot operator.

PS > "Hello" -isnot [System.String]

False

PS > "Hello" -isnot [System.Int32]

True

You can convert objects to a specified type using the -as operator.

PS > 1.123 -as [System.Int32]

1

In this example, we convert the numeric value 1.123 to an object of the type
System.Int32.

Operator Description

-is Checks if an object is a specified type

-isnot Checks if an object is not a specified type

-as Converts an object to a specified type

Table 6-6. Windows PowerShell Type Operators

119Chapter 6: Operators

Special Operators
Windows PowerShell includes special operators that you can use to perform tasks that
cannot be performed by the other operators. Special operators in Windows PowerShell
allow you to perform tasks such as dot-sourcing, creating arrays, and more. Table 6-7
lists the special operators that are available.

The range operator (..) is used to retrieve a specified range from an array.

PS > $array = 1,2,3,4,5

PS > $array[0..2]

1

2

3

This example retrieves the elements with index 0 to 2.

Operator Name Description

.. Range operator Indicates a range of values; the first value in the
range goes before the operator and the last value
goes after it

& Call operator Runs a command, script, or script block

. Dot-sourcing
operator

Runs a script and includes the items, functions,
and variables in the script to the current scope

:: Static member
operator

Calls the static properties operator and methods
of a .NET Framework class

-f Format operator Formats strings by using the format method of
string objects

$() Subexpression
operator

Returns the result of an expression placed in a
parenthetical list

@() Array
subexpression
operator

Returns one or more statements as an array

, Comma operator As a binary operator, creates an array; as a unary
operator, creates an array with one member

Table 6-7. Windows PowerShell Special Operators

120 PowerShel l for Microsoft SharePoint 2010 Administrators

The range operator also accepts negative ranges.

PS > $array[-1..-2]

5

4

The call operator (&) in Windows PowerShell is used to run commands, scripts,
or script blocks. One thing to keep in mind is that the call operator does not interpret
parameters. This example demonstrates how to run a command stored in a variable
and represented by a string:

PS > $myCommand = "Get-SPWeb"

PS > & $myCommand -Identity http://SPServer01

Url

http://spserver01

Here, we use "Get-SPWeb" as the input string to the variable and specify the
arguments when we call the variable.

You can also use the call operator to run script blocks. A script block can contain
any amount of code and is defined by braces.

PS > & { 1 + 1 }

2

The dot-sourcing operator (.) is used to include variables and functions from a
script to the current scope. This means that you can store functions and variables in
a script and use the dot-source notation to quickly access the functions and variables
contained in the script. Here is an example:

PS > $variableInScript

PS > . .\myScript.ps1

PS > $variableInScript

This variable is placed in the myScript.ps1 script

Here, we first try to call the variable $variableInScript. Since we have not
created a variable called $variableInScript in our current session, the command
does not return a value. Next, we dot-source our script, which contains the variable
$variableInScript. When we call the variable a second time, a value is returned.

The static member operator (::) is used to call static methods and properties of a
.NET Framework class. To find out static methods and properties of a class, use the
Get-Member cmdlet with the Static switch parameter.

PS > [System.Math] | Get-Member -Static

121Chapter 6: Operators

Here are some examples of using the static member operator with the static methods
and properties of the System.Math class:

 Use the static method Pow() to return the specified number raised to the
specified power:

PS > [System.Math]::Pow(5,5)

3125

 Use Sqrt() to calculate the square root of 9:

PS > [System.Math]::Sqrt(9)

3

 Call the static property PI, which represents the ratio of a circle to its diameter:

PS > [System.Math]::PI

3,14159265358979

The format operator (-f) is a binary operator that uses the same formatting rules as
the Format() method in the .NET Framework. It takes a string on the left side and an
array of values on the right side. Here is an example:

PS > "{0}" -f "PowerShell"

PowerShell

In this example, the value enclosed in braces represents the index of the element on
the right side. Since the format operator allows an array on the right side, you can use
more values.

PS > "{0}" -f "PowerShell","Windows"

PowerShell

With two elements on the right side but one on the left, the operator returns only
the first element. If you add a second value on the left side, you can retrieve both
values:

PS > "{0} {1}" -f "PowerShell","Windows"

PowerShell Windows

You can also switch the places of the numeric values to change the output.

PS > "{1} {0}" -f "PowerShell","Windows"

Windows PowerShell

The subexpression operator ($()) returns the result of one or more statements.
If the result contains multiple values, an array is returned. The next example
demonstrates how to use the subexpression operator.

PS > "There are: $((Get-Command -Noun SP*).Count) SharePoint cmdlets available

 in Windows PowerShell"

There are: 531 SharePoint cmdlets available in Windows PowerShell

122 PowerShel l for Microsoft SharePoint 2010 Administrators

The array subexpression operator (@()) returns the result of one or more statements
as an array. You can use the operator to create a simple array, as shown in this example:

PS > @("Windows","PowerShell")

Windows

PowerShell

You can access elements in the array by their index.

PS > @("Windows","PowerShell")[0]

Windows

PS > @("Windows","PowerShell")[1]

PowerShell

The comma operator (,) is a binary operator used to create simple arrays in
Windows PowerShell.

PS > 1,2,3

1

2

3

You can also use the comma operator to place a single line in an array.

PS > $array = ,"PowerShell"

PS > $array[0]

PowerShell

When you place a comma operator in front of a value, Windows PowerShell treats
the value as an element in an array. When you place the statement in a variable and call
the first element in the array, the string value is returned.

Summary
The chapter described a variety of operators that we can use to compare and
manipulate values in Windows PowerShell.

Arithmetic Operators These operators allow you to calculate values.

Assignment Operators These operators allow you to assign one or more
values to variables.

Comparison Operators These operators allow you to compare values and
test if values match a specific pattern.

Logical Operators These operators allow you to combine expressions and
check for multiple conditions in one statement.

123Chapter 6: Operators

Redirection Operators These operators allow you to send the output to a file.

Type Operators These operators allow you to find or change the type of an
object.

Special Operators These operators allow you to perform specific tasks that
other operators are unable to perform.

If you want to find out more information about operators in Windows PowerShell,
you can use the Get-Help cmdlet followed by about_Operators.

This page intentionally left blank

125

CHAPTER 7 Flow Control and
Object Disposal

126 PowerShel l for Microsoft SharePoint 2010 Administrators

Like other powerful programming and scripting languages, Windows PowerShell
supports looping and branching logic. The looping statements in Windows
PowerShell let you perform sequences of commands on all members of a

collection (such as sites in a site collection) or on only those that meet a particular
condition. Windows PowerShell also includes two cmdlets that can be used for flow
control. This chapter covers how to use these flow-control facilities, as well as how to
dispose of objects.

Conditional Statements
Windows PowerShell supports the conditional statement if/elseif/else, which
branches execution based on a condition, and the switch statement, which can handle
multiple complex conditions.

The if/elseif/else Statement
The if/elseif/else statement allows you to execute a block of code if a specified
condition is met. However, the statement can also execute a block of code if a condition
is not met. This statement uses comparison operators to test the condition.

The following is a simple if/elseif/else statement.

PS > $url = "http://SPServer01"

PS > if((Get-SPSiteAdministration $url).DiskUsed -gt 20MB) {

>> "Disk space used is more than 20 MB"

>> } else {

>> "Disk space used is less than 20 MB"

>> }

>>

Disk space used is less than 20 MB

In this example, we use the Get-SPSiteAdministration cmdlet to retrieve the
size (the amount of disk space used) of a site collection. We then use an if/else
statement to check if this size exceeds 20MB. If so, we return “Disk space used is
more than 20MB.” If the condition is not met, we return “Disk space used is less
than 20MB.”

The next example demonstrates the use of the elseif keyword within the if/
elseif/else statement.

PS > $url = "http://SPServer01"

PS > if((Get-SPSiteAdministration $url).DiskUsed -gt 20MB) {

>> "Disk space used is more than 20 MB"

>> } elseif((Get-SPSiteAdministration $url).DiskUsed -gt 10MB) {

>> "Disk space used is more than 10 MB"

>> } else {

127Chapter 7: Flow Control and Object Disposal

>> "Disk space used is less than 10 MB"

>> }

>>

Disk space used is more than 10 MB

The elseif keyword lets you introduce another condition and a corresponding
additional execution branch. You can add any number of elseif keywords to an if/
elseif/else statement.

The switch Statement
The switch statement is a series of if statements and is used to evaluate a condition
against a number of potential matches. The switch statement matches the expression
with each of the conditions, and if a match is found, an action associated with the
condition is performed. If more than one condition applies, the switch statement will
execute each of the applicable conditions.

The following is a simple switch statement.

PS > $a = 1

PS > switch($a) {

>> 1 { "contains one" }

>> 2 { "contains two" }

>> }

>>

contains one

In this example, we choose an action based on the value in parentheses after the
switch keyword. The value is matched with each of the conditions. If a match is
found, the action associated with that condition is performed.

The default comparison operator used by the switch statement is the -eq operator.
It is possible to use other operators when using the switch statement, as the next
example demonstrates.

PS > $url = "http://SPServer01"

PS > switch((Get-SPSiteAdministration $url).DiskUsed) {

>> {$_ -gt 20MB} { "Disk space used is more than 20 MB"; Break }

>> {$_ -gt 10MB} { "Disk space used is more than 10 MB"; Break }

>> {$_ -gt 5MB} { "Disk space used is more than 5 MB"; Break }

>> Default { "Disk space used is less than 5 MB" }

>> }

>>

Disk space used is more than 10 MB

In this example, the values in parentheses are the amount of disk space used. The
value is then matched against the patterns in each clause, and if a match is found, the
corresponding clause is executed. Since a Break is used at the end of each condition,

128 PowerShel l for Microsoft SharePoint 2010 Administrators

the switch stops as soon as a match is made. The Default clause is used to perform
an action if none of the switch values match the pattern. Notice how we use the $_
variable to reference the input object.

The switch statement supports a couple of options that you can use to control
the pattern matching. By default, the switch statement is case-insensitive. You can
perform a case-sensitive pattern match with the -Casesensitive option.

PS > $url = "http://SPServer01"

PS > switch -CaseSensitive ($url) {

>> "http://SPServer01" {"matches http://SPServer01"; Break }

>> "http://SPSERVER01" {"matches http://SPSERVER01"; Break }

>> default {"no match found"}

>> }

>>

matches http://SPServer01

We can also use wildcard pattern matching with the switch statement. Here is an
example:

PS > $url = "http://SPServer01"

PS > switch -WildCard -CaseSensitive ($url) {

>> "http*[S]*" {"Starts with 'http' and contains a upper-case S"; Break }

>> "http*[s]*" {"Starts with 'http' and contains a lower-case s"; Break }

>> }

>>

Starts with 'http' and contains a upper-case S

In this example, first we check if the value of the variable $url starts with a 'http'
and contains an uppercase S. Then we check if the value of the variable $url starts
with 'http' and contains a lowercase s. Since the first pattern matches the variable,
the corresponding clause is executed.

The switch statement also supports regular expressions, which let you create
complex pattern matches. Here is an example:

PS > $url = "http://SPServer01"

PS > switch -regex ($url) {

>> "^(http|https):/{2}" {"match found"}

>> }

>>

match found

In this example, we test if the value of the variable $url starts with 'http' or
'https' followed by the : character and two / characters.

129Chapter 7: Flow Control and Object Disposal

Looping Statements
The looping statements in Windows PowerShell include for, while, do/while, and
foreach.

The for Loop
The for loop is a construct used to run commands in a statement block for as long as
the specified condition evaluates to true. The for loop is often used to iterate through
an array or other type of collection and run a set of commands against each of its
elements.

Here is an example of a simple for loop:

PS > for($i = 1; $i -le 5; $i ++) { $i }

1

2

3

4

5

The example returns the value of $i as long as $i is less than or equal 5. Each time
the for loop evaluates, the condition increments the value by 1.

The for loop is often used to loop through an array and run a command on each
element in the array. Here is an example:

PS > $array = 1,2,3,4,5

PS > for($i = 0; $i -lt ($array.count); $i ++) { $array[$i] * 10 }

10

20

30

40

50

In this example, we first create an array holding the values 1 to 5. We then use the
array in the for loop to specify how many times the loop should run. Notice how we
place the array within parentheses in order to calculate the number of times the for
loop should run.

You can also use the for loop to iterate through a collection of sites, as shown in
this example:

PS > $url = "http://SPServer01"

PS > $spWebs = Get-SPSite -Identity $url | Get-SPWeb

PS > for($i = 0; $i -lt $spWebs.Count; $i ++) {

>> $spWebs[$i] | Select-Object -Property Url, Created

>> }

130 PowerShel l for Microsoft SharePoint 2010 Administrators

Url Created

--- -------

http://spserver01 3/28/2010 11:44:11 PM

http://spserver01/Web1 4/10/2010 10:15:03 PM

http://spserver01/Web10 4/10/2010 10:15:37 PM

http://spserver01/Web2 4/10/2010 10:15:21 PM

http://spserver01/Web3 4/10/2010 10:15:23 PM

http://spserver01/Web4 4/10/2010 10:15:26 PM

http://spserver01/Web5 4/10/2010 10:15:28 PM

http://spserver01/Web6 4/10/2010 10:15:29 PM

http://spserver01/Web7 4/10/2010 10:15:31 PM

http://spserver01/Web8 4/10/2010 10:15:33 PM

http://spserver01/Web9 4/10/2010 10:15:35 PM'

Here, we use the Get-SPSite and Get-SPWeb cmdlets to retrieve all the sites
in a specific site collection and store them in the $spWebs variable. First, we use the
$spWebs variable in the test pipeline of the for loop to determine how many times
the loop needs to run. Notice how we use the count property to retrieve the number
of sites. In the command block, we use the same variable to return an array containing
all sites, and then retrieve each individual site in a new iteration of the loop, using
the index notation and the $i variable. Finally, we pipe the site object to the Select-
Object cmdlet and retrieve the Url and Created properties.

The do/while Loop
The while and do/while loops are language constructs used to run a command block
as long as a condition evaluates to true.

Here is an example on a simple while loop:

PS > $i = 0

PS > while ($i -le 4) { "`$i = $i"; $i++ }

$i = 1

$i = 2

$i = 3

$i = 4

This example repeats the command block as long as the value of the $i variable is
not equal to 4. The variable is incremented in the code block. We also use a backtick
character (`) to comment away $i in the output. The backtick character is typically
used to return variable names in the output.

The do/while loop is a variation of the while loop. In the while loop, the
condition is checked in the beginning of the loop. In the do/while loop, the condition
is checked in the end of the loop. Here is an example of a do/while loop:

PS > do { $i++; "`$i = $i";} while ($i -le 4)

$i = 1

$i = 2

131Chapter 7: Flow Control and Object Disposal

$i = 3

$i = 4

$i = 5

In this example, the loop increases by one as long as the variable is less than or
equal to 4. Notice how the value 5 is returned in the output. This happens because the
while condition is still true when the variable $i is equal to 5.

The foreach Loop
The foreach loop is a construct used to iterate through a series of values in a collection
of items. A block of code contained within braces is used to execute a statement for
each item in the collection.

Here is an example of a basic foreach loop:

PS > $items = 1,2,3,4,5

PS > foreach($item in $items) { $item }

1

2

3

4

5

The example iterates through each element in the array and performs the operation
specified in the block of code on each element.

You can also use the foreach loop when working with SharePoint 2010. The example
below demonstrates how to iterate through items in a site collections recycle bin and
display the items Web, Title, and also display who deleted the item.

PS > foreach($i in (Get-SPSite http://SPServer01).RecycleBin) {

>> @{"Web"=$i.Web}

>> @{"Item"=$i.Title}

>> @{"DeletedBy" = $i.DeletedBy}

>> }

>>

Name Value

---- -----

Web Team Site

Item Tasks

DeletedBy POWERSHELL\sezel

132 PowerShel l for Microsoft SharePoint 2010 Administrators

Flow-Control Cmdlets
Windows PowerShell also includes two cmdlets that rely on scriptblocks : ForEach-
Object and Where-Object. A ScriptBlock is a chunk of PowerShell code enclosed
in braces. Note that scriptblocks are also used in functions, filters, and variables. In
fact, anything that you can type in a Windows PowerShell prompt can be placed in a
scriptblock.

The ForEach-Object Cmdlet
ForEach-Object is a flow-control cmdlet that is used to perform an operation on each
object in a pipeline. It uses the automatic variable $_ to represent the current object and
processes one object at a time. The operation to perform is described within a script block.

The ForEach-Object cmdlet has the alias foreach, so you can use that instead
of typing the full cmdlet name. When you use foreach in a pipeline, Windows
PowerShell interprets the command as the ForEach-Object cmdlet. However, when
you use foreach at the beginning of a command, the foreach construct is used instead
of the ForEach-Object cmdlet. The foreach construct is used to iterate through
a series of values in a collection of items, and basically works in the same way
as the ForEach-Object cmdlet. The difference lies in how the objects are processed,
the foreach statement stores the whole collection in memory before processing while
the ForEach-Object cmdlet reads one object at the time. Another difference is that the
foreach statement does not use the $_ variable. Instead the loop variable is specified
in the construct.

Here is a simple example of how to use the ForEach-Object cmdlet:

PS > $num = 1,2,3,4,5

PS > $num | ForEach-Object { $_ }

1

2

3

4

5

Notice how we use $_ to work with the current object being processed by the
ForEach-Object cmdlet.

Here is an example of using the foreach alias:

PS > $num | foreach { $_ }

1

2

3

4

5

Since we are sending an array through a pipeline, Windows PowerShell interprets
the foreach command as the ForEach-Object cmdlet.

133Chapter 7: Flow Control and Object Disposal

You can access specific properties and methods on each object passed to the
ForEach-Object cmdlet. Here is an example where we take an array of two string
values as input and use the ToUpper() method on each object.

PS > $strings = "windows","powershell"

PS > $strings | ForEach-Object { $_.ToUpper() }

WINDOWS

POWERSHELL

You can also use the ForEach-Object cmdlet to perform operations on multiple
sites in a site collection, as demonstrated in this example:

PS > $url = "http://SPServer01"

PS > Get-SPSite -Identity $url | Get-SPWeb | ForEach-Object {

>> "$($_.url) has $($_.Lists.Count) lists"

>> }

http://spserver01 has 24 lists

http://spserver01/Web1 has 9 lists

http://spserver01/Web2 has 1 lists

http://spserver01/Web3 has 7 lists

http://spserver01/Web4 has 2 lists

http://spserver01/Web5 has 1 lists

http://spserver01/Web6 has 7 lists

http://spserver01/Web7 has 2 lists

http://spserver01/Web8 has 6 lists

In this example, we pipe the sites retrieved with Get-SPWeb to the ForEach-
Object cmdlet. We then return the URL and the number of lists in each site. Notice
how we place the $_ variable in a subexpression to access the properties of the current
object being processed by the cmdlet.

In the previous examples, we used a single scriptblock to describe the operation
performed on each object passed to the ForEach-Object cmdlet. It is possible to add
two additional scriptblocks: one that runs before the first object is processed and one
that runs when all objects have been processed. You can add the additional scriptblocks
using the Begin, Process, and End parameters supported by the ForEach-Object
cmdlet as demonstrated in this example:

PS > Get-SPSite -Identity http://SPServer01 | Get-SPWeb |

>> ForEach-Object -Begin {Get-Date} `

>> -Process {"$($_.url) has $($_.Lists.Count) lists"} `

>> -End {Get-Date}

>>

Sunday, June 27, 2010 1:59:03 PM

http://spserver01 has 24 lists

http://spserver01/Site1 has 9 lists

http://spserver01/Site2 has 1 lists

134 PowerShel l for Microsoft SharePoint 2010 Administrators

http://spserver01/Site3 has 7 lists

http://spserver01/Site4 has 2 lists

http://spserver01/Site5 has 1 lists

http://spserver01/Site6 has 7 lists

http://spserver01/Site7 has 2 lists

http://spserver01/Site8 has 6 lists

Sunday, June 27, 2010 1:59:03 PM

Here, we pipe the sites retrieved with Get-SPWeb to the ForEach-Object cmdlet.
We then use the Begin parameter to display the current date and time. The Process
parameter uses the current object being processed and displays the URL, followed by
the number of lists in the current site. Finally, the End parameter is used to display the
date and time after all of the objects have been processed.

The Where-Object Cmdlet
The Where-Object cmdlet is used to select objects from a collection based on the
conditions specified in its scriptblock. Each element coming in through the pipeline is
evaluated, and if the result evaluates to true, the element is passed through. If the result
evaluates to false, the element is ignored. Like the ForEach-Object cmdlet, Where-
Object uses the $_ automatic variable to host the current pipeline element.

Here is an example of using the Where-Object cmdlet:

PS > $num = 1,2,3,4,5

PS > $num | Where-Object {-not ($_ % 2)}

2

4

In this example, we send an array of numeric characters through a pipeline and use
the Where-Object cmdlet to check if any of the elements in the array are even.

You can also use logical operators to test different values.

PS > $num | Where-Object {-not ($_ % 2) -or $_ -eq 5 }

2

4

5

In this example, we check if any of the elements in the array are even or equal to 5.
You can pass cmdlets through a pipeline and perform evaluations on the objects

returned by a cmdlet.

PS > Get-SPSite -Identity http://SPServer01 | Get-SPWeb |

>> Where-Object { $_.LastItemModifiedDate -lt $(Get-Date 5/5/2010) }

Url

http://spserver01

http://spserver01/Site1

http://spserver01/Site2

135Chapter 7: Flow Control and Object Disposal

Here, we pipe the sites retrieved with Get-SPWeb to the Where-Object cmdlet. We
then check if the LastItemModifiedDate is less than May 5, 2010. Three sites meet the
criteria in the example.

You can go one step further and send the objects to the ForEach-Object cmdlet
and perform additional operations on the objects that meet the criteria.

PS > Get-SPSite -Identity http://SPServer01 | Get-SPWeb |

>> Where-Object { $_.LastItemModifiedDate -lt $(Get-Date 5/5/2010) } |

>> ForEach-Object { $_.Author }

UserLogin DisplayName

--------- -----------

POWERSHELL\sezel Sergey Zelenov

POWERSHELL\maka Mattias Karlsson

POWERSHELL\nigo Niklas Goude

In this example, we use the ForEach-Object cmdlet to return the author of the
sites that meet the criteria.

Object Disposal
SPWeb, SPSite, and SPSiteAdministration objects can sometimes take up large
amounts of memory, so using any of these objects in PowerShell requires proper
memory management. Normally, instances of these objects obtained through cmdlets
such as Get-SPWeb are disposed of automatically at the end of the pipeline, but this
does not happen to instances stored in variables.

The Start-SPAssignment and Stop-SPAssignment cmdlets were introduced to
spare script authors the need to dispose of each such object individually. Instead, you
can associate multiple objects with an assignment store, and then dispose of them all
correctly and efficiently with one command.

Dispose Method
If you want to do a straightforward task, such as change the description of a site, use
the cmdlets available, which dispose of the objects at the end of the pipeline. Here is an
example:

PS > $url = "http://SPServer01"

PS > Get-SPWeb -Identity $url | Set-SPWeb -Description "Hello"

If you want to change properties that are not available through the Set-SPWeb
cmdlet, such as enabling or disabling the tree view on a single site, the simplest way
is to store an instance of an SPWeb object in a variable, change the TreeViewEnabled

136 PowerShel l for Microsoft SharePoint 2010 Administrators

property, use the Update() method, and finally use the Dispose() method when the
change is committed to dispose of the object. Here is an example of this approach:

PS > $spWeb = Get-SPWeb -Identity $url

PS > $spWeb.TreeViewEnabled = $True

PS > $spWeb.Update()

PS > $spWeb.Dispose()

The Start-SPAssignment and Stop-SPAssignment Cmdlets
In the previous example, we disposed of the object using the Dispose() method.
As mentioned earlier, it is also possible to dispose of objects using the Start-
SPAssignment and Stop-SPAssignment cmdlets.

There are basically three levels of assignments:

No assignment Applies when an object of the type SPWeb, SPSite, or
SPSiteAdministration is not assigned to a variable and is disposed of
automatically.

Simple assignment All objects are assigned to the global assignment store.

Advanced assignment Objects are assigned to named stores and disposed of
when the specific store is disposed.

In the following example, we store an object of the type SPWeb in a variable and
dispose of it using a simple assignment.

PS > Start-SPAssignment -Global

PS > $spWeb = Get-SPWeb -Identity $url

PS > $spWeb.TreeViewEnabled = $True

PS > $spWeb.Update()

PS > Stop-SPAssignment -Global

When iterating through multiple sites in a site collection, the simple assignment lets
you associate multiple objects with an assignment store, and then dispose of them all
correctly and efficiently with a single command, as shown in this example:

PS > Start-SPAssignment -Global

PS > $spSite = Get-SPSite -Identity $url

PS > $spSite | Get-SPWeb -limit All | ForEach-Object {

>> $spWeb = $_

>> $spWeb.TreeViewEnabled = $True

>> spWeb.Update()

>> }

PS > Stop-SPAssignment -Global

Here, we first use the Start-SPAssignment cmdlet with the Global switch
parameter. Then we iterate through multiple sites in a site collection and change the
TreeViewEnabled property on each site. When the last site is processed, we dispose of
the objects using the Stop-SPAssignment cmdlet.

137Chapter 7: Flow Control and Object Disposal

The previous example might seem like a good way to update multiple sites and
handle the disposal with a few simple cmdlets. But suppose that the site collection
contains a thousand sites. An instance object for each site would then be stored in the
global assignment store, and would not be disposed of until the final site was updated.
This is obviously not a good approach for large site collections.

A better way when iterating through large site collections is to use the advanced
assignment when storing objects returned from cmdlets in variables and using the
Dispose() method to dispose of objects stored in variables created in a loop, as
demonstrated in this example:

PS > $spAssignment = Start-SPAssignment

PS > $spSite = Get-SPSite -Identity $url -AssignmentCollection $spAssignment

PS > $spSite | Get-SPWeb -limit All | ForEach-Object {

>> $spWeb = $_

>> $spWeb.TreeViewEnabled = $True

>> spWeb.Update()

>> $spWeb.Dispose()

>> }

PS > Stop-SPAssignment $spAssignment

Here, we assign the instance object returned from the Get-SPSite cmdlet to an
advanced assignment store. Then we iterate through each site in the site collection
using the ForEach-Object cmdlet. In the script block, we store the current object in
a variable and change a property. When we are finished with the object, we call the
Dispose() method to immediately dispose of the object before handling the next
object passed to the ForEach-Object cmdlet. Finally, when the ForEach-Object
cmdlet has processed all objects in the pipeline, we use Stop-SPAssignment to
dispose of the object assigned to the $spAssignment variable.

Summary
In this chapter, we covered flow control and looping. You also saw examples on how
and when to dispose of objects using Windows PowerShell.

Conditional statements The if/elseif/else branches execution based on a
condition. The switch statement lets you use multiple conditions and supports
pattern matching.

Looping statements The for loop iterates through a collection of objects.
The while and do/While loops execute as long as condition evaluates True.

foreach- and ForEach-Object The foreach loop stores the entire collection in
memory before processing while the ForEach-Object cmdlet processes one
object at the time.

Object disposal objects of the type SPWeb, SPSite or SPSiteAdministration
require proper memory management so consider disposing of them correctly.

This page intentionally left blank

139

CHAPTER 8 Functions, Scripts,
and Remoting

140 PowerShel l for Microsoft SharePoint 2010 Administrators

This chapter completes the introduction to Windows PowerShell in SharePoint
2010 by covering three important components: functions, execution policies, and
scripts. We will also look at running Windows PowerShell remotely.

Windows PowerShell Functions
Functions are used in most programming and scripting languages. A function is a
named block of code that can be referred to from within Windows PowerShell. When
a function’s name is called, the list of statements contained in the function is executed.

A function may accept input in the form of arguments, the values of which can then
be used by the code inside the function. The output from a function can be stored in a
variable, passed to another function, passed to a cmdlet, or written to one of the output
streams.

A function is declared with the keyword function, and the associated code is
placed within a script block. Here is an example of a basic function:

PS > function Hello {

>> "Hello $env:username"

>> }

>>

PS > Hello

Hello nigo

When we call the function Hello, the block of code contained in the function is executed,
and the output is returned to the session.

A function also accepts arguments, as this example shows:

PS > function foo { $args }

PS > foo 1 2 3

1

2

3

This function uses the automatic variable $args to return the arguments passed to
the function. When we call the function and pass the arguments 1, 2, and 3, they are
returned to the session.

Like cmdlets, functions can have parameters. One way to define a parameter is to
place a variable within parentheses after the function’s name. Here is an example of a
function with two named parameters:

PS > function username ($firstname, $lastname) {

>> "FirstName: $firstname"

>> "LastName: $lastname"

>> }

>>

141Chapter 8: Functions, Scripts, and Remoting

The two named parameters to the function are $firstname and $lastname.
When we call the function, each argument passed to the function will be bound to the
corresponding parameter. If we simply type two arguments after we call the function, the
arguments will bind to the corresponding parameter based on the argument’s position.

PS > username Niklas Goude

FirstName: Niklas

LastName: Goude

You can also bind the arguments to a named parameter by typing the parameter’s
name before the argument:

PS > username -firstname Niklas -lastname Goude

FirstName: Niklas

LastName: Goude

This way, you do not need to enter the arguments in positional order. For example,
you can input the last parameter first:

PS > username -lastname Goude -firstname Niklas

FirstName: Niklas

LastName: Goude

By adding a type to a named parameter, you can control the type of argument that
the function accepts. Here is an example:

PS > function addition ([int]$val1, [int]$val2) { $val1 + $val2 }

PS > addition 2 3

5

If we try to input a string value to this function, it returns an error.

PS > addition 2 "three"

addition : Cannot process argument transformation on parameter 'val2'.

Cannot convert value "three" to type "System.Int

32". Error: "Input string was not in a correct format."

At line:1 char:9

+ addition <<<< 2 "three"

 + CategoryInfo : InvalidData: (:) [addition], ParameterBindin...

mationException

 + FullyQualifiedErrorId : ParameterArgumentTransformationError,addition

You can also create switch parameters that can either evaluate to True or False.
Switch parameters do not require any input; you can simply type the function’s name
followed by the name of the switch parameter. Here is an example:

PS > function TV([switch]$on) {

>> if($on) { "The television is on" }

142 PowerShel l for Microsoft SharePoint 2010 Administrators

>> else { "The television is off" }

>> }

PS > TV

The television is off

PS > TV -on

The television is on

When we call the function TV without entering the switch parameter’s name, the
variable $on is set to False, and The television is off is returned. If we do type
the switch parameter’s name, the variable $on is set to True, and The television is
on is returned.

You can add other types of named parameters to a function as well. In the next
example, we create a named parameter of the type System.uri to check if a URL is
valid.

PS > function Check-Url([uri]$url) {

>> if($url.AbsoluteUri -ne $Null -and $url.Scheme -match 'http|https') {

>> $true

>> } else {

>> $false

>> }

>> }

The Check-Url function has one parameter: $url. When we call the function, the
argument passed to the function needs to be bound to the corresponding parameter,
which can happen either by the parameter’s name or position. If we simply type the
argument value after the function’s name, the argument will be bound to the parameter
based on the argument’s position. Since we have only one parameter in this example,
the argument will be bound to the $url parameter.

It is also possible to specify the type of parameter the function will accept (if
there are multiple parameters, type information will also be used in the binding
process, after the name and position). Notice how we use the type System.Uri—an
object representation of a uniform resource identifier (URI), which, according to
Microsoft Developer Network (MSDN), is “a compact representation of a resource
available to your application on the intranet or Internet.” We then check if the value
of its AbsoluteURI property is not null and that the Scheme property value (which
represents the protocol) contains either http or https. If the condition evaluates to
true, True is returned; if not, False is returned. This is a quick way of testing if a URL
supplied is in the correct format. We can call the function by typing its name followed
by the URL that we want to check.

PS > Check-Url -url http://SPServer01

True

143Chapter 8: Functions, Scripts, and Remoting

Windows PowerShell Scripts
Scripts in Windows PowerShell are basically sequences of commands stored in a text
file. A script in Windows PowerShell must have the file name extension .ps1 and can
contain functions such as the ones described in the previous section. Like functions,
scripts in Windows PowerShell can use parameters to accept input.

 Windows PowerShell was designed with security in mind. One security feature is
that files with the extension .ps1 are associated with Notepad, rather than Windows
PowerShell. This prevents users from accidentally clicking a script and executing it
unintentionally.

Another security feature is the execution policy, which controls how scripts can
be executed. Before we get started with writing scripts, let’s take a quick tour of the
execution policies in Windows PowerShell.

Setting the Execution Policy
Windows PowerShell supports execution policies that let you define criteria for
allowing scripts to execute. The execution policies for the local computer and current
users are stored in the registry. The following are the Windows PowerShell execution
policies:

Restricted This is the default policy. It permits commands and functions to be
run in the Windows PowerShell console, but will not run scripts.

AllSigned This policy allows execution of scripts, but requires them to be
digitally signed by a trusted publisher, including scripts written on your local
computer.

RemoteSigned This policy allows scripts written on the local computer to be
executed, but does not allow execution of scripts downloaded or received by
e-mail, unless they are digitally signed.

Unrestricted With this policy, Windows PowerShell runs all scripts, but
displays a warning for scripts originating from the Internet.

NOTE Windows PowerShell (or any component of the operating system) can tell whether or not a
script or file originating from the Internet is trusted by the zone information contained in a specified
alternative data stream of the file. All it takes to turn an Internet file into a local file is opening the
file’s properties and clicking the Unblock button (this applies to Windows XP SP2 and Internet
Explorer 7 and later).

You can use the Get-ExecutionPolicy cmdlet to retrieve the current execution
policy on the local computer.

PS > Get-ExecutionPolicy

Restricted

In this example, the policy is set to Restricted, which is the default.

144 PowerShel l for Microsoft SharePoint 2010 Administrators

To set a Windows PowerShell execution policy, you need elevated privileges. To
run Windows PowerShell with elevated privileges, right-click the Windows PowerShell
icon and click Run as Administrator.

NOTE Since there is no User Access Control (UAC) in Windows XP or Windows Server 2003, the
Run as Administrator option does not apply to those operating systems.

You can now use the Set-ExecutionPolicy cmdlet to change the execution
policy. Here’s an example of changing the policy to RemoteSigned:

PS > Set-ExecutionPolicy RemoteSigned

Execution Policy Change

The execution policy helps protect you from scripts that you do not trust.

Changing the execution policy might expose

you to the security risks described in the about_Execution_Policies help topic.

Do you want to change the execution policy?

[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): Y

Executing Scripts
Let’s start by creating a simple script and executing it. The following code is placed in a
file named myScript.ps1.

One-line comments in scripts are written after a number sign.

$args

<#

Block Comments can be written over

multiple lines.

#>

The script starts with a comment, which is preceded by a # sign to indicate it is a
comment. Next, it uses the automatic variable $args to display the arguments passed
to the script. It ends with a block comment, which is written over multiple lines and
enclosed with <# and #> characters.

Run the script as follows:

PS > .\myScript.ps1 "hey" "hey" "my" "my"

hey

hey

my

my

145Chapter 8: Functions, Scripts, and Remoting

Windows PowerShell does not execute scripts in the current directory by default.
You need to explicitly tell Windows PowerShell that the script is placed in the current
directory by typing .\ before the script name. Alternatively, you can type its full path:

PS > C:\Scripts\myScript.ps1 "hey" "hey"

hey

hey

If the directory name contains whitespace, you can use the call operator (&) to
execute the script. Here’s an example:

PS > & 'C:\My Scripts\myScript.ps1' "hey"

hey

Using Parameters in Scripts
The param statement is used to add parameters to scripts. The param statement must
be the first executed line of code in a script (except for comments or comment-based
help). Script parameters work in the same way as function parameters, as discussed
earlier in this chapter.

The following shows a basic script using parameters.

param([string]$firstname, [string]$lastname)

"FirstName: $firstname"

"LastName: $lastName"

We can execute the script by typing .\, the script name (myScript.psi in this
example), followed by the parameters.

PS > .\myScript.ps1 -firstname Niklas -lastname Goude

FirstName: Niklas

LastName: Goude

Writing Comment-Based Help Topics in Scripts
Cmdlets in Windows PowerShell include a help topic that describes how to use the
cmdlets in Windows PowerShell. When writing scripts, you can add a custom comment-
based help topic using a comment block (enclosed with <# and #>) containing at least
one keyword. Some of the valid keywords are synopsis, description, parameter
(followed by the parameter name), example, inputs, outputs, notes, links,
component, role, and functionality. Here is an example that demonstrates how to
add a comment-based help topic to a script in Windows PowerShell:

<#

.SYNOPSIS

Displays firstname and lastname

146 PowerShel l for Microsoft SharePoint 2010 Administrators

.DESCRIPTION

The myScript.ps1 script displays the firstname and lastname.

.PARAMETER firstname

Specifies the users firstname

.PARAMETER lastname

specifies the users lastname

.OUTPUTS

System.String. myScript.ps1 returns a string with the users firstname and lastname

.EXAMPLE

PS > .\myScript.ps1 Niklas Goude

FirstName: Niklas

LastName: Goude

#>

param([string]$firstname, [string]$lastname)

"FirstName: $firstname"

"LastName: $lastName"

When a comment-based help topic is added to a script, you can use the Get-Help
cmdlet to display the help topic in the session. Here is how we could display the help
topics added to the previous script:

PS > Get-Help .\myScript.ps1 -Examples

NAME

 C:\Scripts\myScript.ps1

SYNOPSIS

 Displays firstname and lastname

 -------------------------- EXAMPLE 1 --------------------------

 PS >.\myScript.ps1 Niklas Goude

 FirstName: Niklas

 LastName: Goude

Using Functions in Scripts
You can add functions in a script by placing them at the top of the script. (This might seem
strange if you are used to VBScript.) Since Windows PowerShell reads the script from top
to bottom, an error will occur if a function is called before it has been read into memory.

147Chapter 8: Functions, Scripts, and Remoting

Here is an example of a Windows PowerShell script that includes a function:

param([string]$Identity)

function Check-Url([uri]$url) {

 if($url.AbsoluteUri -ne $Null -and $url.Scheme -match 'http|https') {

 $true

 } else {

 $false

 }

}

if(Check-Url -url $Identity) {

 Get-SPWeb -Identity $Identity

} else {

 Write-Host "Invalid URL"

}

This script starts with a param statement, where we define the script parameters.
Here, we use the type System.String for the input parameter. Next, we add our
function to the script. At the bottom of the script, we add our code that executes when the
script is run. We start off by validating the URL passed to the script. If the URL is valid,
the script attempts to run the Get-SPWeb cmdlet. If not, the script returns Invalid URL.

Customizing Windows PowerShell with Profile Scripts
Profile scripts run automatically when Windows PowerShell starts. Using profile scripts,
you can customize the Windows PowerShell environment and add commands, aliases,
functions, variables, snap-ins, and drives to every Windows PowerShell session that you
start. Windows PowerShell supports the four basic profile scripts shown Table 8-1.

Path Filename Shells User

$PSHOME\ profile.ps1 All shells All users

$PSHOME\ Microsoft.PowerShell_
profile.ps1

Microsoft.
PowerShell shell

All users

$HOME\My Documents\
WindowsPowerShell\

profile.ps1 All shells Current
user

$HOME\ My Documents\
WindowsPowerShell\

Microsoft.PowerShell_
profile.ps1

Microsoft.
PowerShell shell

Current
user

Table 8-1. Windows PowerShell Profile Scripts

148 PowerShel l for Microsoft SharePoint 2010 Administrators

Table 8-1 shows how different profile scripts affect different users and shells. For
instance, a profile script named profile.ps1 placed in the Windows PowerShell root
folder affects all users. A profile script with the same name placed in the user’s home
folder affects only that user.

For example, if we wanted all Windows PowerShell sessions to start by displaying
“Hello” followed by the current user’s name, we would create a new profile script in
the Windows PowerShell root folder and place the following code in that profile script:

PS > '"Hello $env:USERNAME"' | Out-File $PSHOME\profile.ps1

NOTE Running the command may require administrative privileges.

Windows PowerShell Remoting
Windows PowerShell offers great remote features through Windows Remote
Management. Windows Remote Management is the Microsoft implementation of
the WS-Management console protocol, which is a SOAP-based protocol designed as
a common way for exchanging management information between heterogeneous
systems.

To run Windows PowerShell remotely, you need to enable Windows Remote
Management, which is included in Windows 7 and Windows Server 2008 Release 2.
Enabling Windows Remote Management requires administrative privileges.

Figure 8-1 demonstrates running the Enable-PSRemoting cmdlet to configure
the computer to receive Windows PowerShell remote commands that are sent using
the WS-Management protocol. With this set up, you can run Windows PowerShell
commands remotely from a different computer on the network.

Figure 8-1. Enabling Windows Remote Management

149Chapter 8: Functions, Scripts, and Remoting

Running SharePoint 2010 cmdlets in a remote session also has two additional
implications that you must consider:

Authentication The Windows Remote Management (or WinRM, which is
the “backbone” for PowerShell remoting) supports a variety of authentication
mechanisms, from clear password-based to Kerberos. However, since many
of the SharePoint 2010 cmdlets communicate directly with the SQL server,
they require a means of securely delegating a user’s credentials from the
remote client through the SharePoint 2010 server and onto the backend server
(scenario commonly known as “double hop”). The authentication protocol that
does this best for WinRM is Microsoft’s Credential Security Support Provider
(CredSSP), which means it must be enabled for you to be able to use SharePoint
2010 cmdlets and object model remotely. You can enable CredSSP on the server
using the following command:

PS > Enable-WSManCredSSP -Role Server

 It is also required to enable CredSSP on each client as demonstrated here:

PS > Enable-WSManCredSSP -role client -delegatecomputer

SPServer01.powershell.nu

Memory Limit WinRM implements a set of quotas for remote users,
designed to make the service more robust and reliable. One of such quotas is
the maximum amount of memory that can be allocated to a remote shell, which
by default is set to 150MB. Now, some SharePoint 2010 cmdlets can potentially
use large amounts of memory (even with all the memory management logic in
place), which means they can fail if run in this default configuration. If you run
SharePoint 2010 cmdlets remotely you should consider increasing the quota
setting to at least 1000MB as demonstrated here:

PS > Set-Item WSMan:\localhost\Shell\MaxMemoryPerShellMB 1000

Entering a Remote Session
You can start a remote session against the target computer with the Enter-PSSession
cmdlet:

PS > Enter-PSSession -ComputerName SPServer01.powershell.nu `

>> -Authentication CredSSP -Credential powershell\administrator

This starts an interactive session with a remote computer using CredSSP
authentication. During the session, all commands that you type run on the remote host.
You can stop the remote session with the Exit-PSSession cmdlet:

PS > Exit-PSSession

150 PowerShel l for Microsoft SharePoint 2010 Administrators

To run commands against multiple remote computers, combine the New-PSSession
and Invoke-Command cmdlets. The New-PSSession cmdlet creates persistent connections
to remote computers. The Invoke-Command cmdlet runs a script block on the computers
specified in the New-PSSession cmdlet. Here’s an example:

PS > $Session = New-PSSession `

>> -ComputerName SPServer01.powershell.nu, Server1.powershell.nu `

>> -Authentication CredSSP -Credential powershell\administrator

PS > Invoke-Command -Session $Session -ScriptBlock {

>> "Running Remote commands on: $($Env:COMPUTERNAME)"

>> $regKey = "hklm:software\microsoft\shared tools\web server extensions\14.0"

>> if(Test-Path -Path $regKey) {

>> if(get-itemProperty -Path $regKey |

>> Where-Object { $_.SharePoint -eq "Installed" }) {

>> "$($Env:COMPUTERNAME) is running SharePoint 2010"

>> } else {

>> "$($Env:COMPUTERNAME) is not running SharePoint 2010"

>> }

>> } else {

>> "$($Env:COMPUTERNAME) is not running SharePoint 2010"

>> }

>> }

>>

Running Remote commands on: SERVER1

SERVER1 is not running SharePoint 2010

Running Remote commands on: SPSERVER01

SPSERVER01 is running SharePoint 2010

In the script block in this example, we check if the remote computer has the registry
key HKLM\Software\Microsoft\Shared Tools\Web Server Extensions\14.0
using the Test-Path cmdlet. If the key exists, we check if the SharePoint string value
is equal to Installed. Depending on the outcome of condition evaluation, we then
output an informational message stating whether SharePoint is installed on that
particular server.

NOTE Checking the registry for keys and values is a quick and simple way to verify that
SharePoint 2010 is installed on the server.

Running SharePoint 2010 Cmdlets Remotely
Windows PowerShell includes the Add-PSSnapin cmdlet, which is used to add
registered snap-ins to the current session. After a snap-in is added, you can use cmdlets
and providers that the snap-in supports. When SharePoint 2010 is installed, it also installs

151Chapter 8: Functions, Scripts, and Remoting

a Windows PowerShell snap-in for SharePoint. You can use the snap-in to run cmdlets
included in SharePoint 2010 remotely.

PS > Enter-PSSession -ComputerName SPServer01.powershell.nu `

>> -Authentication CredSSP -Credential powershell\administrator

[SPServer01.powershell.nu]: PS > Get-PSSnapin -Registered

Name : Microsoft.SharePoint.PowerShell

PSVersion : 1.0

Description : Register all administration Cmdlets for Microsoft SharePoint Server

[SPServer01.powershell.nu]: PS > Add-PSSnapin Microsoft.SharePoint.PowerShell

In this example, we use the Enter-PSSession cmdlet to start an interactive session
on the server SPServer01. We then use the Get-PSSnapin cmdlet to retrieve all
registered snap-ins. Since the server has SharePoint 2010 installed, Microsoft
.SharePoint.PowerShell is returned. We can add the snap-in with the Add-
PSSnapin cmdlet and invoke all the cmdlets available in SharePoint 2010 remotely. In
a standard remote Session each pipeline, function, or script is run on its own thread.
To start a remote session that runs pipelines, functions, and scripts on the same thread,
you have to create a custom session configuration on every server in the farm that you
want to manage remotely. This example demonstrates how to create a custom session
configuration.

PS > Register-PSSessionConfiguration -Name SharePoint -ThreadOptions ReuseThread

When starting a remote session against a server in the farm that contains a custom
session configuration, you can simply use the ConfigurationName parameter as
demonstrated in this example:

PS > Enter-PSSession -ComputerName SPServer01.powershell.nu `>> -Authentication

CredSSP -Credential powershell\administrator `>> -ConfigurationName SharePoint

Summary
In this chapter, we covered the use of functions, execution policies, and scripts in
Windows PowerShell. Finally, we looked at a few examples of running Windows
PowerShell remotely.

This concludes Part II of the book. In next part, you will learn how you to use
Windows PowerShell with SharePoint 2010 in “real life.”

This page intentionally left blank

PART III SharePoint 2010
and PowerShell:
Real-World Solutions

This page intentionally left blank

155

CHAPTER 9 Scripted Installation

156 PowerShel l for Microsoft SharePoint 2010 Administrators

SharePoint 2010 can be installed in either of two ways: using a wizard that takes
you through the different steps or by using a script. Using the scripted installation
option not only gives you more options to control the setup, but it also provides

the opportunity to reuse the script over and over again to achieve the exact same result.
Therefore, a scripted installation should be a part of your disaster and recovery plan to
make sure you can quickly rebuild your environment in case of a disaster.

Imagine that you are about to set up a proof-of-concept (POC) or test environment
of SharePoint 2010 to evaluate and test the new features for your organization. This
will most likely be the case whether you are about to implement SharePoint for the first
time or you are upgrading from a previous SharePoint version. It is also likely that you
will need to reinstall this environment several times during your evaluation. Also, you
might want to set up additional staging environments when you are finished with your
testing and evaluation. In these cases, scripted installations will save you a lot of work.

SharePoint 2010 offers a set of PowerShell cmdlets to perform the necessary
installation steps. In this chapter, we will go through a basic setup to demonstrate the
cmdlets. Then we will put together a reusable PowerShell script that you can use as is
or modify to suit your particular needs.

Scripted Installation of SharePoint 2010
Using Windows PowerShell

When the binaries are installed on the server (we will not go through the actual
installation of the SharePoint binaries in this chapter) and we have a Microsoft SQL
Server instance available, the first thing we need to do is create a configuration
database. The configuration database is the heart of a SharePoint farm and contains
more or less all global settings. Without the configuration database, a SharePoint farm
would not function.

To create this new database we use the New-SPConfigurationDatabase cmdlet.
This cmdlet requires that we specify the database name and the name of the database
server instance, as well as the name of the content database associated with the Central
Administration web application, the credentials of the farm account to use, and the
passphrase used when adding extra servers to the farm.

So, to begin, we specify the name of the database. Storing information in variables
allows us to reuse the variables.

PS > $dbName = "NimaIntranet_ConfigDB"

Setting the database name is an option available when performing a setup using
Windows PowerShell (or STSADM). If you use the graphical configuration wizard

157Chapter 9: Scripted Instal lat ion

described later in this chapter, this is not possible. This is one of the main reasons for
using a scripted installation: You are able to control the database name and align it with
corporate naming standards.

We also specify the name of the SQL Server instance that we will use and the name
for the Central Administration content database.

PS > $dbServer = "SQLServer01"

PS > $centralAdmindbName = "NimaIntranet_Admin_ContentDB"

The New-SPConfigurationDatabase cmdlet also requires the Passphrase
parameter. A passphrase is a new addition in SharePoint 2010. It is a “farm password”
used for generating the farm encryption key (master key), which is used for securing
managed accounts and credentials stored in the Secure Store Service. In addition, the
passphrase is used when adding new servers to the farm.

The Passphrase parameter requires an object of the type System.Security
.SecureString as input. By using the ConvertTo-SecureString cmdlet, we can
create a secure string in Window PowerShell, as in this example:

PS > $securePassPhrase =

>> (ConvertTo-SecureString -String "pass@word1" -AsPlaintext -Force)

The SecureString cmdlets in Windows PowerShell use the Windows Data
Protection API when working with secure strings. This API is the standard way a
Windows program protects sensitive data. The encryption key is based on logon
credentials.

We also add the credentials used for the farm administrator account using the
FarmCredentials parameter. The parameter requires a System.Management
.Automation.PSCredential object as input. Windows PowerShell includes the
Get-Credential cmdlet, which prompts the user for password (or a username and
password) and returns a PSCredential object to the session. However, since we are
going for an automated installation, we will create a PSCredential object using the
New-Object cmdlet. Before we can create a PSCredential object, we need to create a
secure string containing the user password, since the PSCredential object constructor
accepts only secure strings as input for the password argument.

PS > $userName = "powershell\administrator"

PS > $password = "P@ssword1"

PS > $securePassword =

>> ConvertTo-SecureString -string $password -AsPlainText -Force

PS > $psCredentials =

>> New-Object -TypeName System.Management.Automation.PSCredential `

>> -ArgumentList $userName, $securePassword

158 PowerShel l for Microsoft SharePoint 2010 Administrators

Now that we have collected all the necessary input information and
stored it conveniently in variables, we can go ahead and run the New-
SPConfigurationDatabase cmdlet:

PS > New-SPConfigurationDatabase -DatabaseName $databaseName `

>> -DatabaseServer $databaseServer `

>> -AdministrationContentDatabaseName $centralAdminDatabase `

>> -Passphrase $securePassPhrase -FarmCredentials $psCredentials

The next step in the process of installing a SharePoint 2010 farm is to install the
Help files. If a custom Help file or only a specific file should be used, you can use the
LiteralPath parameter. In most cases, you will use the All parameter to install all
available Help collections, like this:

PS > Install-SPHelpCollection -All

We also want to enforce security for all resources, including files, folders, and
registry keys. This is done by using the Initialize-SPResourceSecurity cmdlet:

PS > Initialize-SPResourceSecurity

Now we need to install the necessary services and features in our farm. The services
are installed using the Install-SPService cmdlet. The cmdlet installs all services,
service instances, and service proxies specified in the registry on the server. Install-
SPService also supports the Provision parameter used for stand-alone servers only.

The features are installed using the Install-SPFeature cmdlet. The cmdlet
supports the AllExistingFeatures switch parameter, which installs all the existing
features on the server.

The following example demonstrates how to use these two cmdlets.

PS > Install-SPService

PS > Install-SPFeature -AllExistingFeatures

We can manage the SharePoint 2010 environment through the Central
Administration site, but before we can access it, we must provision a new site
using the New-SPCentralAdministration cmdlet. The cmdlet creates a new
web application with the Central Administration site collection at the root, using
the port and authentication provider specified with the parameters Port and
WindowsAuthProvider, as shown in the following example.

PS > New-SPCentralAdministration -Port 8000 -WindowsAuthProvider "NTLM"

The last step in the installation is to copy the shared application data to the web
application folders. We can achieve this using the Install-SPApplicationContent
cmdlet.

PS > Install-SPApplicationContent

159Chapter 9: Scripted Instal lat ion

TIP Since none of the cmdlets used in this scenario produce any output, you can use the
Verbose switch parameter on the cmdlets to get a detailed output of what each actually does.
An example is Install-SPApplicationContent -Verbose.

Automate a SharePoint 2010 Installation
The preceding examples show the basic steps used to provision a new SharePoint 2010
farm. We can automate the procedure of creating new SharePoint 2010 farm by placing
the following code in a script named New-SPInstallation.ps1.

<#

.SYNOPSIS

Automates a SharePoint 2010 installation.

.DESCRIPTION

The script automates a SharePoint 2010 installation.

Requires that the binaries are installed on the server.

.PARAMETER databaseName

Name of the configuration database.

.PARAMETER databaseServer

Name of the database server.

.PARAMETER centralAdminDatabase

Name of the Central Administration content database.

.PARAMETER port

Port to use.

.PARAMETER windowsAuthProvider

NTLM or Kerberos, default set to NTLM.

.PARAMETER userName

Farm Administrator account in the format ‘domain\username’.

.PARAMETER password

Password for the Farm Administrator account.

.PARAMETER passPhrase

Farm password, used to add new machines to the farm.

#>

160 PowerShel l for Microsoft SharePoint 2010 Administrators

param(

 [string]$databaseName,

 [string]$databaseServer,

 [string]$centralAdminDatabase,

 [string]$port,

 [string]$windowsAuthProvider = "NTLM",

 [string]$userName,

 [string]$password,

 [string]$passPhrase

)

Converting password strings to secure strings

$securePassword = ConvertTo-SecureString -String $password -AsPlainText -Force

$securePassPhrase = ConvertTo-SecureString -String $passPhrase -AsPlainText -Force

Creating a PSCredential object

$psCredentials =

New-Object -TypeName System.Management.Automation.PSCredential `

-ArgumentList $userName, $securePassword

New Configuration Database

New-SPConfigurationDatabase -DatabaseName $databaseName `
-DatabaseServer $databaseServer `

-AdministrationContentDatabaseName $centralAdminDatabase `

-Passphrase $securePassPhrase -FarmCredentials $psCredentials

Install help files

Install-SPHelpCollection -All

Install services

Install-SPService

Install Features

Install-SPFeature -AllExistingFeatures

Create a new Central Administration

New-SPCentralAdministration -Port $port -WindowsAuthProvider $windowsAuthProvider

Copy shared application data

Install-SPApplicationContent

We can run the script by typing the following:

PS > .\New-SPInstallation.ps1 -databaseName "NimaIntranet_ConfigDB" `

>> -databaseServer "SQLServer01" `

161Chapter 9: Scripted Instal lat ion

>> -centralAdminDatabase "NimaIntranet_Admin_ContentDB" -port 5057 `

>> -userName "powershell\administrator" `

>> -password "SecretP@ssw0rd" -passPhrase "J0inD0main"

The New-SPInstallation.ps1 script creates a new configuration database and
installs the help collections, the services required, and all existing features. It also sets
up Central Administration and adds shared application content.

TIP A number of solutions for scripted installations using Windows PowerShell are available
on the Internet. One is the Microsoft-provided SPModule, which can be found on TechNet (http://
technet.microsoft.com/en-us/library/cc262839.aspx#section1). You can also find solutions on
Codeplex; for example, AutoSPInstaller is available from that site (http://autospinstaller.codeplex.com/).

Connecting and Disconnecting
Servers with Windows PowerShell

What if you want to scale out and add more servers to your farm? This can be
accomplished using the Connect-SPConfigurationDatabase cmdlet. When using
the cmdlet, you need to specify the configuration database name, database server, and
the passphrase you used when you created the farm (as in the previous example).

PS > $securePassPhrase =

>> (ConvertTo-SecureString -String "pass@word1" -AsPlaintext -Force)

PS > Connect-SPConfigurationDatabase -DatabaseName "NimaIntranet_ConfigDB" `

>> -DatabaseServer "SQLServer01" -PassPhrase $securePassPhrase

If you are unsure of the name of your configuration database, you can use the
Get-SPFarm cmdlet to retrieve it (on a server that is already part of the farm):

PS > Get-SPFarm

The counterpart to the Connect-SPConfigurationDatabse cmdlet is
the Disconnect-SPConfigurationDatabase cmdlet. The Disconnect-
SPConfigurationDatabase cmdlet differs from the Connect-
SPConfigurationDatabase cmdlet in that you do not need to specify
the configuration database name, farm administration account name, or
passphrase. You simply need to make sure that the account you execute the
command as has sufficient permissions. The cmdlet detects to which configuration
database the server is connected.

PS > Disconnect-SPConfigurationDatabase -confirm:$false

The confirm parameter is a switch parameter. If it’s omitted, you will need to
confirm that you want to take the action before it will be performed by the cmdlet.

162 PowerShel l for Microsoft SharePoint 2010 Administrators

Additional Functionality in SharePoint 2010
After the binaries are installed for SharePoint 2010, you will notice that the Start
menu on your server includes an application group named Microsoft SharePoint 2010
Products. Here, you will find the SharePoint 2010 Products Configuration Wizard,
which guides you through essentially the same steps we have gone through using
Windows PowerShell, but using a graphical interface rather than cmdlets. If you
have worked with SharePoint products before, you find this interface familiar. (One
difference is the new Passphrase dialog box, which appears if you have not selected the
Standalone option during the installation of the binaries.)

The SharePoint 2010 Products Configuration Wizard could be run as an alternative
to a scripted installation or when patching the environment with a cumulative update
or service pack. With the wizard, you are also able to connect and disconnect servers
from your farm, as shown in Figure 9-1.

Figure 9-1. Disconnecting a server with the SharePoint 2010 Products Configuration
Wizard

163Chapter 9: Scripted Instal lat ion

Psconfig.exe is the command-line version of the SharePoint 2010 Products
Configuration Wizard tool, which can be found in the %COMMONPROGRAMFILES%\
Microsoft Shared\Web Server Extensions\14\BIN folder. With psconfig.exe,
you are able to run command lines in a script and provision a SharePoint 2010 farm,
similar to what we have done with Windows PowerShell in this chapter. However,
PowerShell has clear advantages when you have several different farm configurations
and need to reprovision those different versions regularly. This is quite common
for organizations that have a SharePoint framework consisting of different staging
environments like a development farm, a test farm, a user acceptance testing (UAT) farm,
and one or many production farms. Using psconfig.exe and Windows command batch
files, you would need to create separate scripts with hard-coded values. With Windows
PowerShell, you can create one script and multiple configuration files—most likely in
XML, as it is extremely easy to work with in Windows PowerShell.

If you have psconfig.exe scripts for provisioning a SharePoint 2007 farm, it’s
quite possible they will work with SharePoint 2010, with no or minimal changes.
However, we recommend that you look into changing your old scripts so that they
use Windows PowerShell, since almost all scripts you will create from now on will be
Windows PowerShell scripts. This will help you create a unified script library based on
the same language.

Summary
In this chapter, we demonstrated how to use Windows PowerShell to script a SharePoint
2010 installation. Key reasons for doing scripted installations are that you have the
opportunity to specify the name of your configuration database and all installations will
always look the same. Windows PowerShell also offers cmdlets to add new servers or to
remove servers from the farm.

As an alternative to scripted installation, SharePoint 2010 offers a configuration
wizard that can take you through the steps to provision a new farm using a graphical
user interface.

Scripted installations can also be done using psconfig.exe, which is the command-
line version of the SharePoint 2010 Products Configuration Wizard.

This page intentionally left blank

165

CHAPTER 10 Working with Web
Applications

166 PowerShel l for Microsoft SharePoint 2010 Administrators

After setting up a SharePoint 2010 farm, it is time to look into how to create and
manage Web applications using Windows PowerShell. In this chapter, we will
demonstrate how to create and extend a Web application and show examples

of how to manage solution packages.
In the first scenario, we will create a Web application that will host a collaboration

area for teams, projects, and meeting workspaces. Since collaboration areas are often
used together with partners and vendors that do not have access to the corporate
network, we will set up a new Web application and extend it to the Extranet zone.
Extending a Web application to the Extranet zone allows external users to authenticate
against a separate directory service using Forms-based authentication instead of the
company’s Active Directory.

The second scenario demonstrates how you can work with solution packages in
SharePoint 2010. In some environments, solution packages need to be updated on a
regular basis. You can automate these steps using Windows PowerShell.

Extending a Web Application
In Chapter 4, we looked at how to manage Web applications using the SharePoint 2010
cmdlets. Now it is time to put the cmdlets to action. Let’s start with creating a Web
application that will be used as the base for our Extranet solution. Before creating a
Web application, we should create a managed account (a new feature in SharePoint
2010 described in Chapter 2) to use for the application pool in which the new Web
application will run.

Creating Managed Accounts
To create a new managed account, you use the New-SPManagedAccount
cmdlet. If a managed account already exists, you can retrieve the account using the
Get-SPManagedAccount cmdlet.

This example demonstrates how to create a new managed account using the New-
SPManagedAccount cmdlet with a PSCredential object containing the username and
password as input. Note that the account used must be an existing account in Active
Directory.

PS > $userName = "powershell\managedaccount"

PS > $password = "C0mplexP@ssw0rd!"

PS > $securePassword =

>> ConvertTo-SecureString -String $password -AsPlainText -Force

PS > $psCredentials =

>> New-Object System.Management.Automation.PSCredential `

>> -ArgumentList $userName, $securePassword

167Chapter 10: Working with Web Appl ications

PS > New-SPManagedAccount -Credential $psCredentials

UserName PasswordExpiration Automatic ChangeSchedule

 Change

-------- ------------------ --------- --------------

POWERSHELL\manage... 6/6/2010 5:02:45 AM False

After we have added a new managed account, we can use the Set-
SPManagedAccount cmdlet with the AutogeneratePassword switch parameter.

PS > Set-SPManagedAccount -Identity "powershell\managedaccount" `

>> -AutoGeneratePassword -Confirm:$False

This creates a secure password that fulfills the password complexity policy. It also
sets the property Automatic Change to True so that SharePoint handles the password
change automatically.

NOTE In Windows Server 2008 R2 (and earlier versions), the local security policy is set to
require a minimum password age of one day. If you create or change the password of an account
in Active Directory and set it up as a managed account in SharePoint 2010, within 24 hours, the
–AutoGeneratePassword switch parameter will generate the following error: “The password
does not meet the password policy requirements.”

Create a New Web Application
Next, we set up the specifications for a new Web application, including its name,
internal host header, internal URL, port, application pool, and managed account. We
also specify the name of the content database to maintain a naming standard. (If a name
for the content database is not specified, the content database will get an autogenerated
name.) In this example, we store the values used in a set of variables.

PS > $waName = "Collaboration Area"

PS > $databaseName = "SharePoint_Workspace_ContentDB_01"

PS > $internalHostHeader = "workspace.nima.net"

PS > $internalUrl = "http://workspace.nima.net"

PS > $port = "80"

PS > $appPool = "SharePoint_Workspaces_applicationPool"

PS > $appPoolUser = Get-SPManagedAccount -Identity "powershell\managedaccount"

We want to separate the Web application from the Intranet as much as we can. Part
of the solution for this is creating a separate service application proxy group. When
creating Web applications, we have the option to specify the proxy group using the
ServiceApplicationProxyGroup parameter, but before we can specify a new proxy
group, we must create one. We can use the New-SPServiceApplicationProxyGroup

168 PowerShel l for Microsoft SharePoint 2010 Administrators

cmdlet to create a new proxy group as shown in the next example. (Service applications
and service application proxy groups will be described in detail in Chapter 18.)

PS > $saProxy = New-SPServiceApplicationProxyGroup -Name Workspaces

We are setting up an Extranet solution where users sitting on the corporate
network will access the site using Windows authentication, and partners and vendors
will access the site through an Extranet zone using Forms-based authentication.
Therefore, we need to create a Web application using Claims-based authentication
to be able to extend it, and turn on Forms-based authentication on the extended Web
application instance.

To enable Claims-based authentication on a Web application, we need to create a
new authentication provider using the New-SPAuthenticationProvider cmdlet and
disable Kerberos authentication.

PS > $spAuth = New-SPAuthenticationProvider -DisableKerberos:$true

Next, we create a Web application using the New-SPWebApplication cmdlet and
use the variables as input to the cmdlet’s parameter.

PS > New-SPWebApplication -Name $waName -ApplicationPool $appPool `

>> -ApplicationPoolAccount $appPoolUser -URL $internalUrl `

>> -HostHeader $internalHostHeader -Port $port `

>> -DatabaseName $databaseName `

>> -ServiceApplicationProxyGroup $saProxy -AuthenticationProvider $spAuth

Extending the New Web Application
After we have created a new Web application, we can extend it using the
New-SPWebApplicationExtension cmdlet. When extending a Web application,
we need to specify which Zone we want to use: Default, Intranet, Extranet, Internet, or
Custom. A new Web application instance will always use the Default zone. Extending
a Web application lets us add an additional zone. In this example, we will use the
Extranet zone.

We also need to create another authentication provider and specify the membership
provider and role manager used for the Forms-based authentication. In this example,
we store the values we will use with the New-SPWebApplicationExtension cmdlet
in a set of variables.

PS > $name = "Extranet"

PS > $hostHeader = "Extranet.nima.net"

PS > $url = "http://Extranet.nima.net"

PS > $zone = "Extranet"

PS > $membershipProvider = "CustomMemberShipProvider"

PS > $roleprovider = "CustomRolesProvider"

PS > $spAuth = New-SPAuthenticationProvider -ASPNETMembershipProvider `

>> $membershipProvider -ASPNETRoleProviderName $roleprovider

169Chapter 10: Working with Web Appl ications

We then retrieve the existing Web application using the Get-SPWebApplication
cmdlet, pipe the Web application to the Set-SPWebApplication cmdlet, and extend the
Web application.

PS > Get-SPWebApplication $internalUrl |

>> New-SPWebApplicationExtension -Name $name -Zone $zone `

>> -URL $url -HostHeader $hostHeader -Port 80 `

>> -AuthenticationProvider $spAuth

Scripting the Extranet Solution
Implementing Forms-based authentication also requires an update of the web.config
file for the corresponding Web application zone instance, Central Administration,
and the Security Token Service. The configuration required depends on the type of
provider. The following script, Set-FBAConfig.ps1, is an example of how this could
be automated using Windows PowerShell. The script configures an Extranet application
for Forms-based authentication against Active Directory and grants Full Control rights
to the current user.

<#.SYNOPSIS

 A generic function that makes modifications to the

 web.config file found at the specified path.

.PARAMETER webapplication

 Web Application url

#>

param([string]$webApplication)

function Edit-WebConfig ($servers, $configPath) {

 # Process each server

 $servers | Foreach-Object {

 # Transform the local path to a UNC path for the

 # server being currently processed

 $configPath = "\\{0}\{1}" -f

 $_, ($configPath -replace ":", "`$");

 # Create an instance of XmlDocument class containing

 # the web.config file using PowerShell's

 # [xml] type accelerator, and store it in a variable

 $config = [xml](Get-Content $configPath);

 # Check if the web.config file contains required

 # configuration sections and add them if needed

 if($config.configuration["system.web"] -eq $null) {

 $config.configuration.AppendChild(

 $config.CreateElement("system.web")) | Out-Null;

 }

 if($config.configuration.SelectSingleNode(

 "system.web"

)["membership"] -eq $null) {

 $config.configuration.SelectSingleNode("system.web").AppendChild(

170 PowerShel l for Microsoft SharePoint 2010 Administrators

 $config.ImportNode(

 ([xml]"<membership><providers></providers></membership>")["membership"],

 $true

)

) | Out-Null;

 }

 if($config.configuration.SelectSingleNode(

 "system.web"

)["roleManager"] -eq $null) {

 $config.configuration.SelectSingleNode("system.web").AppendChild(

 $config.ImportNode(

 (

 [xml]"<roleManager enabled='true'><providers></providers></roleManager>"

)["roleManager"],

 $true

)

) | Out-Null;

 } else {

 # Add the 'enabled='true'' attribute to the roleManager node

 $attrEnabled = $config.CreateAttribute("enabled");

 $attrEnabled.psbase.Value = "true";

 $config.Configuration."system.web".roleManager.SetAttributeNode(

 $attrEnabled

) | Out-Null;

 }

 # If the web.config file being processed is the one for the

 # Central Administration application, add the defaultProvider attribute

 # to the roleManager node

 if ($configPath -eq "\\{0}\{1}" -f $_,($caConfigPath -replace ":","`$")) {

 $attrDefaultProvider = $config.CreateAttribute("defaultProvider");

 $attrDefaultProvider.psbase.Value = "AspNetWindowsTokenRoleProvider";

 $config.Configuration."system.web".roleManager.SetAttributeNode(

 $attrDefaultProvider

) | Out-Null;

 }

 # Add the required sections to the web.config file

 $memProv = $config.configuration."system.web".membership.SelectSingleNode(

 "providers"

);

 if (

 $memProv.SelectSingleNode("add[@name='CustomMemberShipProvider']") -eq $null

) {

 $memProv.AppendChild(

 $config.ImportNode(([xml]$CustomMemberShipProvider)["add"], $true)

) | Out-Null;

 }

 $roleProviders =

 $config.Configuration."system.web".roleManager.SelectSingleNode("providers")

171Chapter 10: Working with Web Appl ications

 if ($roleProviders.SelectSingleNode(

 "add[@name='CustomRolesProvider']"

) -eq $null) {

 $roleProviders.AppendChild(

 $config.ImportNode(([xml]$CustomRolesProvider)["add"], $true)

) | Out-Null;

 }

 # Save the modified XML to the original web.config location

 $config.Save($configPath);

 }

}

Bind to the target Web application

$wa = Get-SPWebApplication $webApplication;

Bind to the Central Administration Web application

$ca = Get-SPWebApplication -IncludeCentralAdministration |

 Where-Object {$_.IsAdministrationWebApplication};

Obtain the names of all the servers hosting the target

Web application and store them in an array

$waServers = @($wa.WebService.Instances |

 Where-Object { $_.Status -eq "Online" } |

 Foreach-Object {$_.Server.Address});

Obtain the names of all the servers hosting the Central Administration

Web application and store them in an array

$caServers = @($ca.WebService.Instances |

 Where-Object { $_.Status -eq "Online" } |

 Foreach-Object {$_.Server.Address});

Obtain the physical local path of the web.config file for the

IIS virtual server that the target Web application's

Extranet zone is extended onto

$waExtranetConfigPath =

Join-Path -Path $wa.IisSettings[

 [Microsoft.SharePoint.Administration.SPUrlZone]"Extranet"

].Path -ChildPath web.config;

Obtain the physical local path of the

web.config file for the IIS virtual server

that the Central Administration Web application is extended onto

$caConfigPath = Join-Path -Path $ca.IisSettings[

 [Microsoft.SharePoint.Administration.SPUrlZone]"Default"

].Path -ChildPath web.config;

Bind to the IIS virtual server on one of the web- front-end servers

that hosts SharePoint Service Application proxies

$wsHost = ([adsi]("IIS://{0}/W3SVC" -f $caServers[0])).psbase.Children |

 Where-Object {$_.ServerComment -eq (Get-SPServiceHostConfig).IisSiteName};

Obtain the physical local path of the web.config file

for the virtual directory that hosts the Security Token Service

$stsWSConfigPath =

Join-Path -Path (($wsHost.psbase.children |

172 PowerShel l for Microsoft SharePoint 2010 Administrators

 Where-Object {$_.Name -eq "ROOT"}).psbase.children |

 Where-Object {((Get-SPSecurityTokenServiceConfig).Parent.Applications |

 Foreach-Object { $_.Name }) -contains $_.Name}).Path -ChildPath web.config;

Bind to the Active Directory domain that the current server is member of

$dom = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain();

Bind to one of the domain controllers at random

$dc = $dom.DomainControllers[0];

Initialize a string variable containing the

Roles Provider configuration section

$CustomRolesProvider =

 '<add name="CustomRolesProvider" ' +

 'type="Microsoft.Office.Server.Security.LdapRoleProvider, ' +

 'Microsoft.Office.Server, Version=14.0.0.0, ' +

 'Culture=neutral, PublicKeyToken=71e9bce111e9429c" ' +

 'server="' + $dc.Name + '" port="389" useSSL="false" ' +

 'groupContainer="CN=Users,DC=' + ($dom.Name -replace "\.", ",DC=") +

 '" groupNameAttribute="cn" groupNameAlternateSearchAttribute=' +

 '"samAccountName" groupMemberAttribute="member" ' +

 'userNameAttribute="sAMAccountName" dnAttribute="distinguishedName" ' +

 'groupFilter="(ObjectClass=group)" userFilter="(ObjectClass=person)" ' +

 'scope="Subtree" />'

Initialize a string variable containing the

Membership Provider configuration section

$CustomMemberShipProvider =

 '<add name="CustomMemberShipProvider" ' +

 'type="Microsoft.Office.Server.Security.LdapMembershipProvider, ' +

 'Microsoft.Office.Server, Version=14.0.0.0, Culture=neutral, ' +

 'PublicKeyToken=71e9bce111e9429c" ' +

 'server="' + $dc.Name + '" port="389" useSSL="false" ' +

 'userDNAttribute="distinguishedName" userNameAttribute="sAMAccountName" ' +

 'userContainer="CN=Users,DC=' + ($dom.Name -replace "\.", ",DC=") +

 '" userObjectClass="person" userFilter="(ObjectClass=person)" ' +

 'scope="Subtree" otherRequiredUserAttributes="sn,givenname,cn" />'

Call the Edit-WebConfig function to modify the

web.config file(s) for the Central Administration Web application

Edit-WebConfig $caServers $caConfigPath;

Call the Edit-WebConfig function to modify the

web.config file(s) for the Security Token Service Web application

Edit-WebConfig $waServers $stsWSConfigPath;

Call the Edit-WebConfig function to modify the

web.config file(s) for the target Web application (Extranet zone)

Edit-WebConfig $waServers $waExtranetConfigPath;

Create a new user policy for the current user and the 'Full Control' role

$admpolicy =

 $wa.ZonePolicies("Extranet").Add(

 (New-SPClaimsPrincipal -Identity "CustomMemberShipProvider:$env:username" `

 -IdentityType FormsUser

).ToEncodedString(),$env:username

);

173Chapter 10: Working with Web Appl ications

$admpolicy.PolicyRoleBindings.Add($wa.PolicyRoles["Full Control"]);

Commit policy change to the target Web application

$wa.Update();

You can run the script by typing the following:

PS > .\Set-FBAConfig.ps1 -webApplication http://Extranet.nima.net

Deploying Solution Packages
In this scenario, we will address the need for frequent updates of solution packages.
We will create a Windows PowerShell script that can be used to install or update the
solutions in SharePoint 2010. We’ll start by reviewing the cmdlets used to manage
solution packages in SharePoint 2010.

Using Cmdlets to Manage Solution Packages
The Get-SPSolution returns the SharePoint solutions in a farm.

PS > Get-SPSolution

If you want to retrieve a specific solution, use the –Identity parameter and
specify the solution’s name as input.

You can also check if a solution exists using the –not operator and the Where-
Object cmdlet. If it doesn’t exist, the command will return True.

PS > -not(Get-SPSolution | Where-Object { $_.name -eq "Project_Template.wsp" })

True

After making sure that a solution package does not exist, you can add a new
solution using the Add-SPSolution cmdlet. When adding a solution using the
Add-SPSolution cmdlet, you need to specify the solution file’s path using the
–LiteralPath parameter. The parameter does not accept wildcards, so you must type
the complete path.

PS > Add-SPSolution -LiteralPath e:\SolutionDeployment\Project_Template.wsp

Once the solution is added to the solution store, you can deploy it globally or to
a specific Web application using the Install-SPSolution cmdlet. Before installing
the solution, you should check if the solution contains any Web application-specific
resources that need to be deployed to the root of each target Web application. You
can get this information by using the Get-SPSolution cmdlet and selecting the
ContainsWebApplicationResource property.

PS > Get-SPSolution project_template.wsp |

>> Select-Object -property ContainsWebApplicationResource

174 PowerShel l for Microsoft SharePoint 2010 Administrators

ContainsWebApplicationResource

 True

If the solution has any Web application-specific resources, you should deploy it
either to all Web applications using the –AllWebApplications switch parameter or to
a specific Web application using the –WebApplication parameter.

A solution can also contain a Code Access Security (CAS) policy, which is a solution
for preventing untrusted code from performing privileged actions. You can check if a
solution contains a CAS policy by using the Get-SPSolution cmdlet and selecting the
ContainsCasPolicy property.

PS > Get-SPSolution project_template.wsp |

>> Select-Object -property ContainsCasPolicy

ContainsCasPolicy

 True

To deploy a solution with CAS policies, use the –CASPolicies switch parameter.
The existing CAS policies will be merged with the CAS policies in the solution package.

NOTE In some cases, you may not want to merge the CAS policies, even if the
ContainsCasPolicy parameter is set to True.

A solution package can also contain assemblies that need to be added to the Global
Assembly Cache (GAC). If it does, you can use the –GACDeployment switch parameter.
This example demonstrates how to add a solution to all Web applications, merge the
existing CAS policies, and add the assemblies to the GAC:

PS > Get-SPSolution project_template.wsp |

>> Install-SPSolution -AllWebApplications -CASPolicies -GACDeployment

When updating solutions in SharePoint 3.0, you could use the STSADM
upgradesolution operation, but it had some limitations that sometimes made it
necessary to first retract the solution and remove it from the solution store, and then
add and deploy the updated solution. In SharePoint 2010, you can use the Update-
SPSolution cmdlet instead. The cmdlet is used to update an existing solution, without
first retracting and deleting it. The cmdlet requires that you specify the solution
identity followed by the path to the updated solution.

PS > Update-SPSolution -identity project_template.wsp `

>> -LiteralPath e:\SolutionDeployment\project_template.wsp

The Update-SPSolution cmdlet should be used if the solution package has been
updated using the UpgradeActions feature introduced in SharePoint 2010. Otherwise,

175Chapter 10: Working with Web Appl ications

it is recommended that you retract and delete the solution before reinstalling it. When
retracting a solution, you can force the retraction timer job to execute using the Start-
SPAdminJob cmdlet. The cmdlet requires that the SharePoint Administration Service be
stopped. In the next example, we create a function named Restart-SPAdminV4, which
restarts the SharePoint Administration Service and forces the timer jobs to execute.

function Restart-SPAdminV4([switch]$adminJob) {

 Stop-Service SPAdminV4

 if($adminJob) { Start-SPAdminJob }

 Start-Service SPAdminV4

}

PS > $spSolution = Get-SPSolution -identity project_template.wsp

PS > if($spSolution.Deployed) {

>> if($spSolution.ContainsWebApplicationResource) {

>> $spSolution | Uninstall-SPSolution -AllWebApplications -Confirm:$false

>> } else {

>> $spSolution | Uninstall-SPSolution -Confirm:$false

>> }

>> Restart-SPAdminV4 -adminJob

>> do{ Start-Sleep -Seconds 1 } while ($spSolution.Deployed)

>> $spSolution | Remove-SPSolution -Confirm:$false

>> }

In this example, we check if a solution is deployed; if it is, we retract it using the
Uninstall-SPSolution cmdlet. We also check if the solution contains any Web
application resources using the ContainsWebApplicationResource property; if it
does, we retract the solution from all Web applications. Next, we use the Restart-
SPAdminV4 function to force the retraction timer job to execute. Then we wait for the
Deployed property to equal False using a do/while loop. Finally, we delete the
solution using Remove-SPSolution.

Scripting Solution Package Updates
The following script automates the solution package deployment steps demonstrated
in the previous examples.

<#

.SYNOPSIS

Deploys a solution package.

.PARAMETER solution

path to solution package.

.PARAMETER webApplication

Web applications to install solutions on,

if solution has Web application resources

176 PowerShel l for Microsoft SharePoint 2010 Administrators

.PARAMETER gacDeployment

Deploy to GAC

.PARAMETER casPolicy

Deploy CAS policies

.PARAMETER update

Update a solution instead of

retracting and removing.

#>

param(

 [string]$solution,

 [array]$webApplication,

 [switch]$gacDeployment,

 [switch]$casPolicy,

 [switch]$update

)

stops the SPAdminV4 service and runs Start-SPAdminJob

function Restart-SPAdminV4([switch]$adminJob) {

 Stop-Service SPAdminV4

 if($adminJob) { Start-SPAdminJob }

 Start-Service SPAdminV4

}

Check if Snap-in is loaded

if(-not(

 Get-PSSnapin | Where { $_.Name -eq "Microsoft.SharePoint.PowerShell"})

) {

 Add-PSSnapin Microsoft.SharePoint.PowerShell;

}

Check if solution exists.

$spSolution = Get-SPSolution -Identity (Split-Path $solution -Leaf) `

-ErrorAction SilentlyContinue

Check if solution exists and should be removed

if($spSolution -AND -not($update)) {

 # Check if solution is deployed

 if($spSolution.Deployed) {

 # Check if solution has Web application resources

 Write-Host "Retracting Solution."

 if($spSolution.ContainsWebApplicationResource) {

 $spSolution | Uninstall-SPSolution -AllWebApplications -Confirm:$false

 } else {

 $spSolution | Uninstall-SPSolution -Confirm:$false

177Chapter 10: Working with Web Appl ications

 }

 }

 Restart-SPAdminV4 -adminJob

 # Wait for solution

 do { Start-Sleep -Seconds 1 } while ($spSolution.Deployed)

 # Remove solution

 Write-Host "Removing Solution."

 $spSolution | Remove-SPSolution -Confirm:$false

 # nullify $spSolution

 $spSolution = $null

}

Check if solution does not exist

if(-not($spSolution)) {

 # Add solution

 Write-Host "Adding Solution."

 $spSolution = Add-SPSolution -LiteralPath $solution

}

check if solution contains Web application resources

if($spSolution.ContainsWebApplicationResource -AND -not($webApplication)) {

 Write-Host "The solution $solution contains Web application resources"

 Write-Host "please specify Web applications."

 return;

}

if(-not($spSolution.Deployed)) {

 # Check if there are application-level resources

 if ($spSolution.ContainsWebApplicationResource) {

 # Install solution on each specified Web application

 foreach($wa in $webapplication) {

 Write-Host "Deploying solution to $wa."

 Install-SPSolution -identity $spSolution.Name -Webapplication $wa `

 -GACDeployment:$gacDeployment -CASPolicies:$casPolicy -force

 }

 } else {

 # Install solution on Farm

 Write-Host "Deploying solution to Farm."

 Install-SPSolution -identity $spSolution.Name `

 -GACDeployment:$gacDeployment -CASPolicies:$casPolicy -force

 }

} else {

 # Check if there are application-level resources

 if ($spSolution.ContainsWebApplicationResource) {

 # Update solution on each specified Web application

 foreach($wa in $webapplication) {

 Write-Host "Updating solution on $wa,"

178 PowerShel l for Microsoft SharePoint 2010 Administrators

 Update-SPSolution -identity $spSolution.Name -Webapplication $wa `

 -LiteralPath $solution -GACDeployment:$gacDeployment `

 -CASPolicies:$casPolicy -force

 }

 } else {

 # Update solution on Farm level

 Write-Host "Updating solution on Farm."

 Update-SPSolution -identity $spSolution.Name -LiteralPath $solution `

 -GACDeployment:$gacDeployment -CASPolicies:$casPolicy -force

 }

}

Restart-SPAdminV4 -adminJob

Wait for solution

do { Start-Sleep -Seconds 1 } while (-not($spSolution.Deployed))

You can run the script by calling it from a Windows PowerShell console window,
as follows:

PS > .\Deploy-SPSolution.ps1 -solution C:\solutions\solution.wsp `

>> -gacDeployment -casPolicy

Additional Functionality in SharePoint 2010
Central Administration offers a lot of opportunities when it comes to managing Web
applications in a SharePoint 2010 farm. With the new Ribbon user interface, the task has
become much easier than in previous versions.

In the first scenario in this chapter, we created and extended a Web application—a
task that is rather simple to complete from Central Administration. However, in some
cases, you may need to create a lot of Web applications, and this type of repetitive task
is much easier to perform using a script. The first example also demonstrated how to
enable Forms-based authentication using the new Claims-based security architecture,
which also can be done from Central Administration. In Figure 10-1, you can see that
when creating a new Web application and selecting the Claims-based authentication
option and Forms-based authentication, you have the option to specify the membership
provider and role provider.

179Chapter 10: Working with Web Appl ications

In Central Administration, under the System Settings | Farm Management |
Manage farm solutions, you can see the solutions installed in your farm, as shown in
Figure 10-2. The main limitation here is that you are not able to add new solutions to
the solution store or upgrade existing solutions. Those two tasks must be performed
using Windows PowerShell. When a solution is added or updated using Windows
PowerShell, you can deploy, retract, and delete the solution from Central Administration.
When deploying solutions, you have the opportunity to specify the target Web
application and the time to perform the actual deployment, just as with Windows
PowerShell.

Figure 10-1. Creating a new Web application that will use Forms-based authentication

180 PowerShel l for Microsoft SharePoint 2010 Administrators

Summary
In this chapter, we demonstrated how to manage Web applications using Windows
PowerShell by extending and setting the authentication providers. We also presented
examples of how to specify additional settings, such as the content database name and
application proxy group. When setting up a new Web application, we used a managed
account that we created using Windows PowerShell. Using different managed accounts
for different Web applications lets us improve security and significantly decrease the
risk of downtime in a SharePoint 2010 farm.

The other scenario in this chapter showed how to manage solutions in SharePoint
2010 by using the Get-SPSolution, Install-SPSolution, and Add-SPSolution
cmdlets.

Figure 10-2. List of solutions added and deployed to the SharePoint 2010 farm

181

CHAPTER 11 Working with Site
Collections

182 PowerShel l for Microsoft SharePoint 2010 Administrators

Acommon requirement when setting up new SharePoint environments is to
create a lot of new site collections. For instance, you may have a new project
collaboration area where each of the running projects within a company should

get its own site to be able to collaborate more efficiently. In this chapter, we will look at
how to automate the creation of site collections in SharePoint 2010.

In our first scenario, we will start with a Microsoft Excel spreadsheet containing a
number of projects (or site names) that need to be created. You will see how simple it is
to use this spreadsheet with Windows PowerShell to automatically create sites and set
properties like, owner, title, and description.

In our second scenario, we will create a simple solution for ordering new site
collections and have the sites automatically created when the necessary information is
provided. We will use a SharePoint list that we modify with a couple of new columns.
Then, using a Windows PowerShell script, we will be able to find new items in the list
and create the site collection based on the information about those items.

Creating Site Collections Based on an Excel Spreadsheet
In this scenario, our IT department has created a Microsoft Excel 2010 spreadsheet
containing a list of all the currently running projects. Each project requires a new site
collection. The Excel spreadsheet has the following column headings:

 Project Name

 Project Description

 Project Manager

 Project Manager Logon Name

 Department

 Cost Center

 Project Type

Before looking into how to create all the site collections, let’s see how we can work
with Excel 2010 using Windows PowerShell.

Working with Excel Spreadsheets
In this example, we will use the Connection object in ADO. ADODB.Connection
is used to read, edit, and update databases such as Microsoft Access, and it can also
be used to read data in Excel spreadsheets. We can create an instance of the ADODB
.Connection object using the New-Object cmdlet.

PS > $excelConnection= New-Object -ComObject "ADODB.Connection"

183Chapter 11: Working with Site Col lections

Next, we open a connection to the Excel spreadsheet using the Open method
supported by the Connection object. When creating a connection string to an Excel
spreadsheet, we use the OLE DB provider and specify the path to the Excel file.

PS > $file = "C:\Documents\projects.xlsx"

PS > $excelConnection.Open(

>> "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=" +

>> "$file;Extended Properties=Excel 12.0;"

>>)

After we have established a connection to the Excel spreadsheet, we can execute a
query that retrieves the values from the spreadsheet. This example demonstrates how
we pass the query to the Execute method:

PS > $strQuery = "Select * from [Sheet1$]"

PS > $objRecordSet = $excelConnection.Execute($strQuery)

Notice how we use Sheet1$ in the query, which is the name of the sheet from
which we want to retrieve the data. By default, Excel spreadsheets are named Sheet1,
Sheet2, Sheet3, and so on. If you have a worksheet with a custom name, use that
name in the query.

Before looping through the fields and retrieving the values, we should get the field
names since we will use them later. We can retrieve the field names from the Fields
property. Here, we use the Select-Object cmdlet to retrieve the fields:

PS > $fields = $objRecordSet.Fields | Select-Object -Property Name

Next, we move to the first record in the recordset using the MoveFirst method.
The first record represents the first row in the Excel spreadsheet.

PS > $objRecordSet.MoveFirst()

Finally, we loop through the records and retrieve the values from the Excel
spreadsheet.

PS > do {

>> $obj = New-Object -TypeName PSObject

>> $fields | ForEach-Object {

>> $obj |

>> Add-Member -MemberType NoteProperty -Name $_.Name `

>> -Value $objRecordSet.Fields.Item($_.Name).Value

>> }

>> $obj

>> $objRecordSet.MoveNext()

>>} until ($objRecordSet.EOF)

184 PowerShel l for Microsoft SharePoint 2010 Administrators

We use a do until loop to go through each record in the recordset. We start the
loop by creating a custom object, which we will use to store the output. We then loop
through each field using the ForEach-Object cmdlet and use the current field’s name
as input to the Item parameterized property to retrieve the field value. Using the field
name and field value with the Add-Member cmdlet, we are able to store the information
in a custom object. After the record’s fields and values are stored in the custom object,
the object is returned. Finally, we use the MoveNext method to move on to the next
row and repeat the procedure. The loop continues until the EOF (end of file) property
evaluates to true.

After the loop completes, we tidy up our objects using the Close method.

PS > $objRecordSet.Close()

PS > $excelConnection.Close()

The following shows the complete Get-Excel function that we can use to read
information from an Excel spreadsheet.

function Get-Excel([string]$File) {

 $excelConnection = New-Object -ComObject "ADODB.Connection"

 $excelConnection.Open(

 "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=" +

 "$File;Extended Properties=Excel 12.0;"

)

 $strQuery ="Select * from [Sheet1$]"

 $objRecordSet = $excelConnection.Execute($strQuery)

 $fields = $objRecordSet.Fields | Select-Object -Property Name

 $objRecordSet.MoveFirst()

 do {

 $obj = New-Object -TypeName PSObject

 $fields | ForEach-Object {

 $obj |

 Add-Member -MemberType NoteProperty -Name $_.Name `

 -Value $objRecordSet.Fields.Item($_.Name).Value

 }

 $obj

 $objRecordSet.MoveNext()

 } until ($objRecordSet.EOF)

 $objRecordSet.Close()

 $excelConnection.Close()

}

185Chapter 11: Working with Site Col lections

When we run the function, the rows in the Excel spreadsheet are returned as
custom objects, as shown in Figure 11-1.

Figure 11-1. Results of the Get-Excel function

Creating the Site Collections
We can store the output from the Get-Excel function in a variable that we can use to
loop through each project and create a site collection using the New-SPSite cmdlet.

PS > $projects = Get-Excel -file C:\Documents\project.xlsx

TIP Windows PowerShell supports the Import-Csv and Export-Csv cmdlets, which
let you work with comma-separated files. This means that you can achieve the same result as
demonstrated in the previous example by saving the Excel file as CSV and running $projects
= Import-Csv -Path C:\Documents\project.csv.

Now it is a simple procedure to create the site collections in SharePoint 2010 using
the ForEach-Object cmdlet.

PS > $projects | ForEach-Object {

>> New-SPSite -url http://nimaintra.net/sites/$($_.'Project Name') `

>> -Name $($_.'Project Name') -Description $($_.'Project Description') `

>> -OwnerAlias $($_.'Project Manager Logon Name') `

186 PowerShel l for Microsoft SharePoint 2010 Administrators

>> -Template "STS#0"

>> }

>>

Url

http://nimaintra.net/sites/tintrax

http://nimaintra.net/sites/Tin-tech

http://nimaintra.net/sites/Sildax

http://nimaintra.net/sites/Aplamlam

http://nimaintra.net/sites/Lattex

http://nimaintra.net/sites/Tincan

http://nimaintra.net/sites/Kaviar

http://nimaintra.net/sites/Lotphase

http://nimaintra.net/sites/Tinzennix

http://nimaintra.net/sites/Spanex

We go through each object stored in the $projects variable using the ForEach-
Object cmdlet. Then we use the New-SPSite cmdlet to create new site collections,
with the object property values as input. Since the property names include spaces, we
place the names within quotation marks. As each New-SPSite command completes,
the URL of the newly created site collection is displayed in the Windows PowerShell
console.

Creating Site Collections Based on
Items in a SharePoint 2010 List

Another way to automate creation of site collections is to use information stored in a
SharePoint 2010 list. Before we dig into the script, let’s take a look at the SharePoint
2010 list.

Working with SharePoint 2010 Lists
We will use a custom list named Request Site that contains the items for new site
collections. Table 11-1 shows the columns in this custom list.

When creating a script that automates the creation of site collections in SharePoint
2010, we need a solution for detecting new items in the list. If a new item exists in the
list, we will create a site collection based on the item. Let’s go through this step by step.

First, we need to bind to the target SharePoint 2010 list. We can do this using the
GetList method of the SPWeb class, which accepts a list’s URL as input.

PS > $spWeb = Get-SPWeb -Identity "http://nimaintra.net"

PS > $spList = $spWeb.GetList("Lists/Request Site")

187Chapter 11: Working with Site Col lections

The Status field in the list will act as identifier of new items in this example. If the
status is set to Requested, the item will be processed by the script. If the status is set to
Created, the item will be skipped.

The Status field’s default value is set to Requested, but how do we prevent users
from changing the value to Created manually? A simple but effective trick is to hide the
field from the user. Here’s how to do this:

PS > $spField = $spList.Fields["Status"]

PS > $spField.ShowInNewForm = $False

PS > $spField.ShowInEditForm = $False

PS > $spField.Update()

PS > $spField = $null

We create an instance of the SPField object and set the properties ShowInNewForm
and ShowInEditForm to False. We then make sure the changes persist in SharePoint
by calling the Update method.

We can use the same approach for the Comment field, which will be used to add
comments to each item.

Column Name Column Type

Site name Changed name of the default Title column

Site description Multiple lines of text

Site owner Person or group

Department Single line of text

Cost center Single line of text

Project type Choice (drop-down menu)
Internal
Vendor
Partner

Status Choice (drop-down menu)
Requested
Created

Comment Multiple lines of text

Table 11-1. Custom Columns Created in the Request Site List

188 PowerShel l for Microsoft SharePoint 2010 Administrators

Next, we store the list items in an array. We use the Items property of the SPList
object and pipe all list items to the Where-Object cmdlet to retrieve specific list items
where the value of the Status field equals Requested.

PS > $items = $spList.Items | Where-Object {

>> $_["Status"] -eq "Requested" }

NOTE When you use the Items property on an SPList object, all the list items in the list are
read into memory, meaning that large lists may consume a lot of memory. If you are working with
large lists, it is a good idea to instead use the SPList object methods, such as GetItemById
and GetItems, which support Collaborative Application Markup Language (CAML) queries. You
will see examples of how to work with list items using CAML queries and the GetItemById
method in Chapter 15.

This array contains all list items where the status equals Requested. We can use the
ForEach-Object cmdlet to loop through each list item in the array and create a site
collection based on the list item’s property values.

PS > $items | ForEach-Object {

>> $siteName = $_["Site name"] -Replace "\W","";

>> $siteURL = $url + "sites/" + $siteName;

>> $userID = $_["Site owner"] -Replace "\d*;#","";

>> $user = Get-SPUser -Web $url -Identity $userID;

>> New-SPSite -url $siteURL -Name $($_["Site name"]) `

>> -Description $($_["Site description"]) -OwnerAlias $user -Template "STS#0";

>> $_["Status"] = "Created";

>> $_["Comment"] = "Site $siteURL created";

>> $_.Update();

>> }

We start by replacing nonalphanumeric characters in the Site name field value using
the -replace operator, which accepts regular expressions as a pattern to search for, as
described in Chapter 6. The \W character represents all nonalphanumeric characters.
When we use Windows PowerShell to retrieve a value from a person or group field,
such as the Site owner field here, the string returned contains the user’s ID, followed
by the ;# characters, followed by the user’s display name. Since we want the user login
name or an SPUser object as input to the New-SPSite cmdlet, we need to replace the
unwanted characters and use the Get-SPUser cmdlet.

The last step performed in the ForEach-Object cmdlet is updating the current
item’s status to Created. Updating the items helps us to keep track of which items
we have already processed, allowing us to rerun the script without processing the
same item twice. We also add a comment in the Comment field and call the Update
method to commit the changes we made to the list item to the SharePoint 2010 content
database.

189Chapter 11: Working with Site Col lections

Scripting the Site Collection Creation
The following script contains all the code used in this solution. The script also checks
if the site collection already exists before adding a new site collection and adds a
comment in the Comment field depending on the outcome.

<#

.SYNOPSIS

Automates creation of site collections

based on information stored in a SharePoint 2010 list.

.DESCRIPTION

The script automates creation of site collections

based on a SharePoint List containing various settings

required.

.PARAMETER listURL

URL of the source list.

.PARAMETER field

Name of the field to be used for filtering items, default is set to 'Status'.

.PARAMETER pattern

Value to be used for filtering items, default is set to 'Requested'.

#>

param(

 $listURL,

 $field = "Status",

 $pattern = "Requested"

)

Check if Snap-in is loaded

If (-not(

 Get-PSSnapin | Where-Object { $_.Name -eq "Microsoft.SharePoint.PowerShell"})

) {

 Add-PSSnapin Microsoft.SharePoint.PowerShell;

}

Convert special characters to quoted UTF-8 format

$webUrl = [Microsoft.SharePoint.Utilities.SPEncode]::UrlDecodeAsUrl($listUrl);

Iterate through each segment

-1..-(([uri]$listURL).Segments).Count | ForEach-Object {

 if ($spWeb -eq $null) {

 $webUrl = $webUrl -replace `

190 PowerShel l for Microsoft SharePoint 2010 Administrators

 [Microsoft.SharePoint.Utilities.SPEncode]::UrlDecodeAsUrl(

 ([uri]$listURL).Segments[$_]

);

 $spWeb = Get-SPWeb -Identity $webUrl -ErrorAction SilentlyContinue

 }

}

Get the list

$spList = $spWeb.GetList($listURL);

Store list items in an array

$items = $spList.Items | Where-Object { $_[$field] -eq $pattern }

Check if the array contains information

if ($items -ne $null) {

 # Loop through list item collection

 $items | ForEach-Object {

 # Build site URL and replace non-alphanumeric characters

 $siteName = $_["Site name"] -Replace "\W","";

 $siteURL = $webURL + "sites/" + $siteName;

 # Check if site collection already exists

 if(Get-SPSite -Identity $siteURL -ErrorAction SilentlyContinue) {

 # Site already exists

 Write-Host "Site $siteURL already exists";

 # Updating comments

 $_["Comment"] = "Site already exists, choose a new name";

 $_.Update();

 } else {

 # Get the user ID

 $userID = $_["Site owner"] -Replace "\d*;#","";

 # Check if User exists

 if(

 Get-SPUser -Web $webUrl -Identity $userID -ErrorAction SilentlyContinue

) {

 $user = Get-SPUser -Web $webUrl -Identity $userID

 } else {

 $user = New-SPUSer -Web $webUrl -UserAlias $userID

 }

191Chapter 11: Working with Site Col lections

 # Create site collection

 New-SPSite -url $siteURL -Name $_["Site name"] `

 -Description $_["Site description"] -OwnerAlias $user -Template "STS#0";

 # Update the list item

 $_["Status"] = "Created";

 $_["Comment"] = "Site $siteURL created";

 $_.Update();

 }

 }

}

Dispose SPWeb

$spWeb.Dispose()

This example demonstrated some of the ways you can work with SharePoint 2010
lists. In Chapter 14, we will describe how to access, modify, and manage lists in more
detail.

You can run the script against the Request Site list manually by typing the
following:

PS > .\Create-RequestedSites.ps1 `

>> -listURL "http://nimaintra.net/Lists/Request Site"

When you do not specify the field or pattern, the default values are used. The
script checks the list for list items where the Status field equals Requested and creates
new site collections based on the list items retrieved. Finally, the script updates the list
items’ Status field to Created and adds a comment indicating the site was created in the
Comment field.

You can also set up a scheduled task that runs the script once per day, automating
the creation of new site collections.

Additional Functionality in SharePoint 2010
New site collections can be created from Application Management and Site Collections
in Central Administration. However, it is not possible to import a list of sites or automate
the creation of site collections through Central Administration.

SharePoint 2010 also has a Self-Service Site Collection Management feature,
which allows users with the Use Self-Service Site Creation permission to create new
site collections, as shown in Figure 11-2. The disadvantage of this feature is that the
administrator loses control over the naming standards.

192 PowerShel l for Microsoft SharePoint 2010 Administrators

Another feature available in SharePoint 2010 is Site Use Confirmation and
Deletion, which allows administrators to set up rules for when sites should be
deleted. The settings page, shown in Figure 11-3, lets you specify how often a site
owner will receive an e-mail to confirm that the site is still in use. It is then possible
to automatically delete the site if a confirmation is not received after a specific
number of notifications.

Figure 11-2. The Self-Service Site Collection creation form

193Chapter 11: Working with Site Col lections

Summary
In this chapter, we looked at how to create new site collections using Windows
PowerShell. You’ve seen the convenience Windows PowerShell offers when performing
repetitive tasks.

The first example showed how to work with Excel spreadsheets, and how
easy it is to gather information from one source and use it to automate tasks in the
Windows environment. Using Windows PowerShell to enumerate through Excel
spreadsheet, CSV files, or even a SQL Server database allows you to automate the
creation of hundreds of site collections in a way that is not possible through Central
Administration.

In the second example, we looked at how to connect to a SharePoint list and use the
information stored in the list items to create new site collections. SharePoint lists and
list items will be covered in detail in Chapters 14 and 15.

Figure 11-3. The Site Use Confirmation and Deletion settings in Central Administration

This page intentionally left blank

195

CHAPTER 12 Managing Sites

196 PowerShel l for Microsoft SharePoint 2010 Administrators

As discussed in the previous chapter, SharePoint 2010 offers some functionality
to automatically delete site collections that are not confirmed to be in use.
However, this is available only at the site collection level with the out-of-the

box tools. But what if we want to have the same kind of functionality for sites?
Imagine that we have thousands of sites within a site collection (which is often the

case when working with meeting workspaces, for example). We want to know which
sites have not been used for the last 180 days, and send an e-mail message to the people
responsible for those sites. For our solution, we will need to identify sites that have not
been used within the time period, get the contact information for the people to receive
e-mail, and send the e-mail.

Validating Site Usage
The Get-SPWeb cmdlet allows us to work with sites and subsites in SharePoint 2010.
When we use the Get-SPWeb cmdlet, an instance of the SPWeb class is returned. The
SPWeb class in SharePoint 2010 has the LastItemModifiedDate property, which we
can use to check if anything has been changed in the site within a specific time span.

To begin, we need to create a DateTime object, which we will use to perform the
comparison of dates against. In this example, we create a DateTime object containing
the date of 180 days ago.

PS > $lastModified = (Get-Date).AddDays(-180)

First, we use the Get-Date cmdlet to get the current date, placing it within
parentheses to make sure it is evaluated first. Then we call the AddDays method
on the resulting System.DateTime object, passing it a negative value so that the
corresponding number of days are subtracted, rather than added, from the current
date.

We can then use the DateTime object stored in the lastModified variable and
compare it to the LastItemModifiedDate to retrieve all subsites that have not been
modified within the last 180 days.

PS > $url = "http://nimaintra.net"

PS > $objSelected = Get-SPSite $url | Get-SPWeb -limit All |

>> Where-Object { $_.LastItemModifiedDate -le $lastModified } |

>> Select-Object -Property Url, Title, Description,

>> @{Name="Modified";Expression={$_.LastItemModifiedDate}},

>> @{Name="email";Expression={$_.RequestAccessEmail}},

>> @{Name="authorEmail";Expression={$_.Author.Email}},

>> @{Name="inactive";Expression={

>> (Getdate).Subtract($($_.LastItemModifiedDate)).Days}}

197Chapter 12: Managing Sites

We use the Where-Object cmdlet to filter out the subsites that do not satisfy our
criteria. We then use the Select-Object cmdlet to limit the set of properties returned
to the URL, title, and description.

We also create calculated hash table properties based on other site properties. Hash
table-based properties allow us to set custom names for the properties, as well as to
perform advanced calculations to obtain a value. In the first three hashtable-based
properties, we set custom names and get the values from the SPWeb object directly. In
the last hash table property, the expression consists of a calculation that results in the
number of days that the subsite has not been used.

NOTE This example identifies sites where nothing has been updated for a specific number of
days. Realize that this might not mean that the site is not in use. For instance, the site could be an
archive or a FAQ that contains information that is not frequently updated. When using this type of
approach, you should evaluate if the criteria used is applicable for your environment, so that sites
that are used are not deleted.

Getting Site Contact Information
Since sites do not use the same primary and secondary administrator concept as site
collections, we need to find a way to get the e-mail address for the person responsible
for each site. For this information, we can look at the site settings to see if the Allow
requests for access setting is enabled, as shown in Figure 12-1. This is a standard
setting, accessible from the Site Permissions page of each site, which contains the
e-mail address of the person who will receive site permission request e-mail messages.
However, access requests are not enabled by default. Our work-around will retrieve the
username of the person who created the site and try to send an e-mail to that user.

Since we are planning on sending an e-mail to the address set in the
RequestAccessEmail property, it is a good idea to check if the property contains any
information (as noted, this value is not set by default). If the RequestAccessEmail
property is not set, we will use the Author property, which contains an SPUser
object representing the user who created the site. The user object contains a property
that stores the user’s e-mail address, which we can use instead of the value of the
RequestAccessEmail property.

We can use the ForEach-Object cmdlet to loop through all subsites, check the
RequestAccessEmail property value, and set it to the e-mail address of the user who
created the site if the value is null or empty.

PS > $objSelected | ForEach-Object {

>> if ([string]::IsNullOrEmpty($_.email)) { $_.email = $_.authorEmail }

>> }

It is possible to use comparison operators to check if a string value is null or empty,
but here, we use a quicker way: the static method IsNullOrEmpty of the System
.String class.

198 PowerShel l for Microsoft SharePoint 2010 Administrators

NOTE Static methods and properties relate only to information about the concept that the class
represents. If you want to find out more about static methods and properties available on a class,
you can pipe the type to the Get-Member cmdlet and use the Static parameter supported by
the cmdlet: [string] | Get-Member -Static.

Now that we have collected all the necessary information and stored it in an array
of objects, we can send an e-mail to all the e-mail addresses where the sites have been
inactive for at least 180 days. In order to send an e-mail with Windows PowerShell, we
need to know the SMTP server and the e-mail address from which we will send the
e-mail. We can retrieve the information from the Web application.

PS > $smtp =

>> ((Get-SPWebApplication $url).OutboundMailServiceInstance).Server.Address

PS > $from = (Get-SPWebApplication $url).OutboundMailSenderAddress

Figure 12-1. The Manage Access Requests dialog box

199Chapter 12: Managing Sites

We retrieve the SMTP server address using the OutboundMailServiceInstance
property of the SPWebApplication class. This returns an object containing information
about the service. The object contains a Server property, which is an object of type
Microsoft.SharePoint.Administration.SPServer, from which we retrieve the
server’s address. The OutboundMailSenderAddress property is of the type System
.String, so we do not need to retrieve additional properties to get the sender address.
In both previous examples, we place the cmdlets within parentheses to avoid needing to
store the resulting object in an intermediary variable.

The last step is to loop through the array stored in the objSelected variable and
send e-mail messages to the addresses set in the RequestAccessEmail property. We
can do this with the Windows PowerShell Send-MailMessage cmdlet. This cmdlet has
parameters that we can use to customize the e-mail.

For our solution, we will send the body of the e-mail as HTML, but before we can
send the e-mail, we need to convert the message to HTML. This can be done using the
ConvertTo-Html cmdlet. Note that because this cmdlet returns an array where each
high-level element is represented by a separate object, we also must join those elements
into a single string using the static Join method of the familiar System.String class.

PS > $objSelected | ForEach-Object {

>> $subject = "The site $($_.Title) has been inactive in $($_.inactive) days"

>> $body = [string]::Join("`n",($_ |

>> ConvertTo-Html -Property Url, Title, Description, Modified, email, inactive))

>> Send-MailMessage -To $_.email -From $from -Subject $subject `

>> -Body $body -SmtpServer $smtp -BodyAsHtml

>> }

Here, we loop through each object in the array stored in the objSelected variable.
We then use the object’s Title and inactive properties to build up the subject. The body
of the e-mail is based on the properties of the object and converted to HTML using the
ConvertTo-Html cmdlet. Finally, we use the Send-MailMessage cmdlet to send the
e-mail.

Check Site Usage Script
The following is the complete Mail-SiteOwner script.

<#

.SYNOPSIS

Checks if sites have been modified within a given timespan.

.DESCRIPTION

The script checks if sites within a site collection

have been modified within a specified timespan. If the switch

-sendMail is used, the script sends an email to the

address specified in the RequestAccessEmail property.

200 PowerShel l for Microsoft SharePoint 2010 Administrators

.PARAMETER url

Site Collection URL.

.PARAMETER days

Days to check, default set to 180.

.PARAMETER sendMail

Sends an email to the address specified in the RequestAccessEmail property.

#>

param(

 [string]$url,

 [int32]$days = 180,

 [switch]$sendMail

)

Check if Snap-in is loaded

if (-not(

 Get-PSSnapin | Where-Object { $_.Name -eq "Microsoft.SharePoint.PowerShell"})

) {

 Add-PSSnapin Microsoft.SharePoint.PowerShell;

}

create DateTime object 30 days back.

$lastModified = (Get-Date).Subtract((New-TimeSpan -Days $days))

Get-SPSite $url | Get-SPWeb | ForEach-Object {

 # Check when the last item was modified

 if($_.LastItemModifiedDate -le $lastModified) {

 # Store web information in object

 $objSelected = $_ | Select-Object Url, Title, Description,

 @{Name="Modified";Expression={$_.LastItemModifiedDate}},

 @{Name="email";Expression={$_.RequestAccessEmail}},

 @{Name="inactive";Expression={

 (Get-date).Subtract($($_.LastItemModifiedDate)).Days

 }}

 # if string is null or empty, use author email instead

 if ([string]::IsNullOrEmpty($objSelected.email)) {

 $objSelected.email = $_.Author.Email

 }

 # Check if mail should be sent

 if ($sendMail –and $objSelected.email) {

 # Get SMTP Settings.

 $smtp =

201Chapter 12: Managing Sites

 ((Get-SPWebApplication $url).OutboundMailServiceInstance).Server.Address

 $from = (Get-SPWebApplication $url).OutboundMailSenderAddress

 # Store subject in a variable

 $subject = "The site $($_.Title) has been inactive in $days days"

 # Body as html

 $body = [string]::Join("`n", ($objSelected |

 ConvertTo-Html -Property Url, Title,

 Description, Modified, email, inactive))

 Send-MailMessage -to $objSelected.email -from $from -Subject $subject `

 -Body $body -SmtpServer $smtp -BodyAsHtml

 }

 # Return information to PowerShell

 return $objSelected

 }

}

You can run the script by typing the following:

PS > .\Mail-SiteOwner.ps1 -url http://nimaintra.net `

>> -days 180 -sendMail

The script checks all the sites within a site collection. If a site has not been modified
within the last 180 days, an e-mail is sent to the RequestAccessEmail address. If no
address is set, the e-mail is sent to the e-mail address of the site’s creator (if available).

Additional Functionality in SharePoint 2010
SharePoint 2010 does not offer any tools to handle sites that have not been used for a
specific amount of time, and such sites could potentially use up a lot of unnecessary
storage in the content database. However, it is possible to build workflows using
Microsoft Visual Studio that would do something very similar to what we have done
using Windows PowerShell in this chapter.

In a document management system, it is usually important to use expiration policies
on each document or item. SharePoint 2010 supports this and offers the opportunity to
create retention approval workflows and information management policies. Information
management policies can be applied to a specific list to affect the items within the
list or on a content type. You can use a policy to specify rules for what will happen to
documents or lists that have not been modified for a specific amount of time. Figure 12-2
shows an example of creating such a policy.

When creating an information management policy, you specify the action to take
when items are not modified within the configured time span. You have the option to
specify a disposition approval workflow, which can include sending an e-mail to the

202 PowerShel l for Microsoft SharePoint 2010 Administrators

user who created the item or document. The disposition approval workflow is one of the
workflows shipped with SharePoint 2010, and it can be used on a list or content type.

Summary
In this chapter, we looked at how we can get information about a site using Windows
PowerShell. In the sample scenario, we retrieved information about when each site was
last modified and, with the help of a DateTime object, we retrieved all the sites that had
not been modified during the last 180 days. We also looked at a couple of other properties
of the SPWeb object that can be very useful in these kinds of scenarios. We checked to see
if the site used the Allow requests for access setting, and where it did not, we retrieved
the e-mail address of the user who created the site, using the Author property.
Finally, we retrieved the SMTP settings from the Web application and used these settings
to send an e-mail to the users responsible for the unused sites.

Finally, we briefly discussed the opportunities SharePoint 2010 offers when it comes
to setting up retention periods using information management policies and disposition
workflows. These settings are limited to only documents and list items.

Figure 12-2. Creating a new information management policy

203

CHAPTER 13 Managing the Look and
Feel of Sites

204 PowerShel l for Microsoft SharePoint 2010 Administrators

As with earlier versions of SharePoint, you can change the appearance of sites
by applying different themes. However, in SharePoint 2010, themes are based
on .thmx files, as used by the Microsoft Office suite. This means that you can

create a theme in Microsoft PowerPoint, for example, and apply it to a SharePoint site.
In our first scenario, we will look into how to work with themes and change the theme
on a site.

Next, we will explore how to change the site icon, title, and description using
Windows PowerShell.

Our final examples demonstrate how to manage and modify the navigation of sites.
This can be useful when you want to have a unified look and feel for the navigation, as
well as when you add or remove menu items. For instance, you might want all the sites
to have a navigation item pointing to a specific page or site.

Managing Themes
This scenario demonstrates how you can work with themes in SharePoint 2010 using
Windows PowerShell. We will show examples of how to get a site’s current theme,
retrieve a list of all available themes in a site collection, and apply a new theme to a site.

Getting the Current Theme
Let’s start with retrieving a site’s current theme. First, use the Get-SPWeb cmdlet to
bind to the site.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

The SPWeb object is then used with the static GetThemeUrlForWeb method
provided by the Microsoft.SharePoint.Utilities.ThmxTheme class and stored in
the variable theme.

PS > $theme =

>> [Microsoft.SharePoint.Utilities.ThmxTheme]::GetThemeUrlForWeb($spWeb)

If the site uses the default theme, an empty string is returned by this method.
Otherwise, the method returns a string containing the relative path to the theme.

Next, we check if the variable contains a value. If it does, we use the static Open
method provided by the Microsoft.SharePoint.Utilities.ThmxTheme class. This
method has six overloads where each one of them accepts two parameters: an SPSite
object and a theme URL.

PS > if (-not([string]::IsNullOrEmpty($theme))) {

>> [Microsoft.SharePoint.Utilities.ThmxTheme]::Open($spWeb.Site, $theme) |

>> Format-List -Property @{Name="Theme";Expression={$_.Name}},

>> @{Name="Type";Expression={$_.ThemeType}},

>> @{Name="RelativeUrl";Expression={$_.ServerRelativeUrl}},

205Chapter 13: Managing the Look and Feel of Sites

>> @{Name="Description";Expression={$_.AccessibleDescription}}

>>

>> } else {

>> Write-Host "Default theme is used"

>> }

PS > $spWeb.Dispose()

In this example, we use an if statement to check if the theme variable contains a
value. If the condition evaluates to True, we use the Open method supported by the
ThmxTheme class to retrieve the theme that is currently used on the site, and use the
Format-List cmdlet to display specific properties. If the variable theme is null or
empty, we use the Write-Host cmdlet and return a message. Finally, we dispose of the
object using the Dispose() method.

The following is the complete Get-SPTheme function.

function Get-SPTheme([string]$url) {

 $spWeb = Get-SPWeb -Identity $url

 $theme = [Microsoft.SharePoint.Utilities.ThmxTheme]::GetThemeUrlForWeb($spWeb)

 if (-not([string]::IsNullOrEmpty($theme))) {

 [Microsoft.SharePoint.Utilities.ThmxTheme]::Open($spWeb.Site, $theme) |

 Format-List -Property @{Name="Theme";Expression={$_.Name}},

 @{Name="Type";Expression={$_.ThemeType}},

 @{Name="RelativeUrl";Expression={$_.ServerRelativeUrl}},

 @{Name="Description";Expression={$_.AccessibleDescription}}

 } else {

 Write-Host "Default theme is used"

 }

 $spWeb.Dispose()

}

You can use the function by typing the following:

PS > Get-SPTheme -url http://nimaintra.net/subsite

Getting the Available Themes
SharePoint 2010 includes a number of site themes, such as Azure, Berry, and
Bittersweet. We can retrieve a list of all themes available in a site collection using the
GetManagedThemes method of the Microsoft.SharePoint.Utilities.ThmxTheme
class.

PS > $spSite = Get-SPSite -Identity http://nimaintra.net

PS > [Microsoft.SharePoint.Utilities.ThmxTheme]::GetManagedThemes($spSite)

PS > $spSite.Dispose()

When we use the GetManagedThemes method, ThmxTheme objects are returned
using default formatting for .NET classes that have no specific formatting rules associated
with them—a flat list of all public properties. If we want to return only specific properties,
we can pipe the results to the Select-Object cmdlet.

206 PowerShel l for Microsoft SharePoint 2010 Administrators

The Get-SPThemeName function demonstrated next uses a URL as parameter to
access a site collection and then calls the static GetManagedThemes method, piping the
results to the Select-Object cmdlet to return the Name property.

function Get-SPThemeName([string]$url) {

 $spSite = Get-SPSite -Identity $url

 [Microsoft.SharePoint.Utilities.ThmxTheme]::GetManagedThemes($spSite) |

 Select-Object -Property Name

 $spSite.Dispose()

}

You can use this function by typing the following:

PS > Get-SPThemeName -url http://nimaintra.net

Setting a New Theme
ThmxTheme objects support the ApplyTo method, which we can use to set a new
theme for a site. When applying a new theme to a site, we first create an instance of the
ThmxTheme class using the static method GetManagedThemes. We can use the Where-
Object cmdlet to filter on the name of the theme we want to use.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $thm =

>> [Microsoft.SharePoint.Utilities.ThmxTheme]::GetManagedThemes($spWeb.Site) |

>> Where-Object { $_.Name -eq "Berry" }

In this example, we use the Where-Object cmdlet to retrieve the ThmxTheme object
where the value of the Name property equals Berry.

Next, we can use the ApplyTo method on the ThmxTheme object to change the
theme of a site in SharePoint 2010 to the Berry theme in this example. The ApplyTo
method takes two arguments: an SPWeb object and a shareGenerated Boolean value.

PS > $thm.ApplyTo($spWeb, $true)

PS > $spWeb.Dispose()

The Set-SPTheme function is used to change the theme of a site in SharePoint 2010.
The following is the complete function.

function Set-SPTheme([string]$url, [string]$theme) {

 $spWeb = Get-SPWeb $url

 $thm =

 [Microsoft.SharePoint.Utilities.ThmxTheme]::GetManagedThemes($spWeb.Site) |

 Where-Object { $_.Name -eq $theme }

 $thm.ApplyTo($spWeb, $true)

 $spWeb.Dispose()

}

207Chapter 13: Managing the Look and Feel of Sites

Here is an example of running the function to change the theme to Azure:

PS > Set-SPTheme -url http://nimaintra.net -theme Azure

If we want to apply the same theme to multiple sites, we can use the Get-SPSite
and Get-SPWeb cmdlets and pipe the retrieved site objects to the Set-SPTheme
function.

PS > Get-SPSite -Identity http://nimaintra.net | Get-SPWeb | ForEach-Object {

>> Set-SPTheme -url $_.Url -theme Azure }

To revert to the default theme, use the static SetThemeUrlForWeb method of
the Microsoft.SharePoint.Utilities.ThmxTheme class. The method has two
overload definitions. One of the overloads takes two arguments: an SPWeb object and a
theme URL. The second overload also supports a shareGenerated parameter. In the
next example, we set the theme URL to null, which resets the site to the default theme.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > [Microsoft.SharePoint.Utilities.ThmxTheme]::SetThemeUrlForWeb(

>> $spWeb, $null)

The SetThemeUrlForWeb method can also be used to apply a new theme to a site,
just as we did with the ApplyTo method of the ThmxTheme class in a previous example.

PS > $thm =

>> [Microsoft.SharePoint.Utilities.ThmxTheme]::GetManagedThemes($spWeb.Site) |

>> Where { $_.Name -eq "Berry" }

PS > [Microsoft.SharePoint.Utilities.ThmxTheme]::SetThemeUrlForWeb(

>> $spWeb, $thm.ServerRelativeUrl)

PS > $spWeb.Dispose()

Changing the Site Logo, Title, and Description
We can modify the site logo, as well as its title and description, by changing the
properties of the corresponding SPWeb object.

Changing the Logo
In this scenario, we will look at how easy it is to change the logo of a site. A site logo
is the small image that appears to the left of the site title, in the top-left corner of your
site’s pages.

First, we bind to the site using the Get-SPWeb cmdlet.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

208 PowerShel l for Microsoft SharePoint 2010 Administrators

The SPWeb object returned by the Get-SPWeb cmdlet supports SiteLogoUrl
and SiteLogoDescription properties that we can use to set a new site logo and a
description. In this example, we use an image that exists in a picture library within the site.

PS > $spWeb.SiteLogoUrl = "http://nimaintra.net/Pictures/Image.bmp"

PS > $spWeb.SiteLogoDescription = "My Image"

After we have set the properties, we use the Update method to commit the changes
we have made to the site, and finally dispose of the object.

PS > $spWeb.Update()

PS > $spWeb.Dispose()

By placing the code in a function, we can reuse it on multiple sites without needing
to retype the code every time. Here is an example on a function, Set-SPSiteLogo, that
sets the site logo and the site logo description:

function Set-SPSiteLogo([string]$url, [string]$logoUrl,
[string]$description) {
 $spWeb = Get-SPWeb -Identity $url

 $spWeb.SiteLogoUrl = $logoUrl
 $spWeb.SiteLogoDescription = $description
 $spWeb.Update()
 $spWeb.Dispose()

}

You can run the function by typing the following:

PS > Set-SPSiteLogo -url http://nimaintra.net -description "My image" `

>> -logoUrl http://nimaintra.net/Pictures/Image.bmp

Changing the Title and Description
Both the title and description of a site in SharePoint 2010 are available as properties
on a corresponding SPWeb object. These properties allow us to change the title and
description with only a few lines of code, as this example shows:

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $spWeb.Title = "New Title"

PS > $spWeb.Description = "New Description"

PS > $spWeb.Update()

PS > $spWeb.Dispose()

Here, we create an instance of an SPWeb object and set the Title property to
New Title and the Description property to New Description. When we call the
Update method, the changes are committed.

209Chapter 13: Managing the Look and Feel of Sites

We can also use the more convenient Set-SPWeb cmdlet, which allows us to
perform the same actions on a single line of code.

PS > Set-SPWeb http://nimaintra.net -Description "New Description"

Managing Navigation
Along with the top navigation control, SharePoint 2010 can, out of the box, present
navigation items in the left-side navigation pane using the Quick Launch bar or using
the Tree View navigation. Both the Quick Launch navigation and the Tree View controls
can be displayed at the same time, but usually only one is used.

Enabling the Tree View
The Tree View navigation control can be useful in scenarios where there are deeper
structures or when easy access to lists and libraries are important.

To enable the Tree View, set the TreeViewEnabled property to True.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $spWeb.TreeViewEnabled = $true

PS > $spWeb.Update()

PS > $spWeb.Dispose()

Managing the Quick Launch Navigation
The Quick Launch navigation control can be enabled or disabled using the
QuickLaunchEnabled property.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $spWeb.QuickLaunchEnabled = $true

PS > $spWeb.Update()

PS > $spWeb.Dispose()

In some scenarios, it is useful to add new navigation nodes to the Quick Launch
bar. We can use Windows PowerShell to add any number of navigation nodes to the
Quick Launch bar on any number of sites with a few simple lines of code. The first step
is to create an instance of a SPNavigationNode object. The constructor contains two
overloads. The first overload supports two arguments as input: a title and a URL. The
second overload also supports a Boolean value that determines if the URL is external.
In this case, external means external to the current site collection. By default, the value is
set to False. To add a link to an external site, we set the value to True.

PS > $node = New-Object Microsoft.SharePoint.Navigation.SPNavigationNode `

>> -ArgumentList "bing", "http://www.bing.com", $true

210 PowerShel l for Microsoft SharePoint 2010 Administrators

Once we have an SPNavigationNode object stored in a variable, we can add the
node to the Quick Launch bar on a site. There are three different methods that we can
use when adding nodes to the Quick Launch bar: Add, AddAsFirst, and AddAsLast.

The Add method requires two arguments: the node to add and the previous node.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $previousNode = $spWeb.Navigation.QuickLaunch |

>> Where { $_.Title -eq "Lists" }

PS > $spWeb.Navigation.QuickLaunch.Add($node, $previousNode)

PS > $spWeb.Dispose()

Notice how we create a variable holding the previous node. The new node is added
after the specified node.

We can add nodes to the top or to the bottom of the Quick Launch bar with the
AddAsFirst or AddAsLast method, respectively. These methods require only the
new node as input. The following example shows how to add a node to the bottom of
the bar.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $spWeb.Navigation.QuickLaunch.AddAsLast($node)

PS > $spWeb.Dispose()

As always with Windows PowerShell, if you repeat it—script it. The following
function, New-SPQuickLaunchNode, adds nodes to the Quick Launch bar.

function New-SPQuickLaunchNode(

 [string]$url,

 [string]$nodeURL,

 [string]$nodeTitle,

 [switch]$isExternal,

 [switch]$addAsFirst

) {

 $spWeb = Get-SPWeb -Identity $url

 if ($isExternal) {

 $node =

 New-Object Microsoft.SharePoint.Navigation.SPNavigationNode $nodeTitle,

 $nodeUrl, $true;

 } else {

 $node =

 New-Object Microsoft.SharePoint.Navigation.SPNavigationNode $nodeTitle,

 $nodeUrl;

 }

 if ($addAsFirst) {

 $spWeb.Navigation.QuickLaunch.AddAsFirst($node);

 } else {

211Chapter 13: Managing the Look and Feel of Sites

 $spWeb.Navigation.QuickLaunch.AddAsLast($node);

 }

 $spWeb.Dispose();

}

Here is an example of using the function to add a node named Finance:

PS > New-SPQuickLaunchNode -url http://nimaintra.net `

>> -nodeURL /finance -nodeTitle "Finance"

In this example, we add an internal site. When adding internal sites, we can type a
relative URL instead of the full URL.

The function also supports the IsExternal switch, which we can use when adding
external links (external to the current site collection) and the AddAsFirst switch that
adds the new node at the top of the Quick Launch bar.

Managing Top Navigation
The top navigation, or global navigation, control in each site can be configured so that
it inherits the same navigation structure as its parent site. We can set the top navigation
to inherit the parent’s navigation items using the UseShared property, which accepts a
Boolean value.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $spWeb.Navigation.UseShared = $true

PS > $spWeb.Dispose()

It is also possible to add new nodes to the top navigation. This requires that we
create an instance of an SPNavigationNode object. This example shows how to add a
node at the end of the top navigation bar:

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $spWeb.Navigation.TopNavigationBar.AddAsLast($node)

PS > $spWeb.Dispose()

The following function, New-SPTopNavigation, adds nodes to the top navigation
bar.

function New-SPTopNavigation (

 [string]$url,

 [string]$nodeURL,

 [string]$nodeTitle,

 [switch]$isExternal,

 [switch]$addAsFirst

) {

212 PowerShel l for Microsoft SharePoint 2010 Administrators

 $spWeb = Get-SPWeb -Identity $url;

 if ($isExternal) {

 $node =

 New-Object Microsoft.SharePoint.Navigation.SPNavigationNode $nodeTitle,

 $NodeUrl, $true;

 } else {

 $node =

 New-Object Microsoft.SharePoint.Navigation.SPNavigationNode $nodeTitle,

 $NodeUrl;

 }

 if ($addAsFirst) {

 $spWeb.Navigation.TopNavigationBar.AddAsFirst($node);

 } else {

 $spWeb.Navigation.TopNavigationBar.AddAsLast($node);

 }

 $spWeb.Dispose();

}

Here is an example of using the function to add links to sites in the same site collection
to the top navigation bar:

PS > New-SPTopNavigation -url http://nimaintra.net -nodeURL /Project `

>> -nodeTitle "Project"

If we want to add an external link, we can use the IsExternal switch.

PS > New-SPTopNavigation -url http://nimaintra.net `

>> -nodeURL http://www.powershell.nu `

>> -nodeTitle "PowerShell.nu" -isExternal

Additional Functionality in SharePoint 2010
As mentioned previously, SharePoint themes are now based on .thmx files, as used by
the Microsoft Office suite. Out of the box, a number of themes are available, but we
have the opportunity to upload custom .thmx files to the themes gallery and apply
them to a site.

Themes can be managed from the Site Settings page, as shown in Figure 13-1. You
can modify themes directly. For instance, you can change the color of default text or the
font that should be used within the site.

213Chapter 13: Managing the Look and Feel of Sites

Similarly, the global navigation and Quick Launch bar controls can be configured
from the Site Settings page of each site, as shown in Figure 13-2. These options allow
you to specify if the navigation should be inherited and what sort order should be
applied. You can also add and remove items from the navigation.

Figure 13-1. Modifying themes through the user interface

214 PowerShel l for Microsoft SharePoint 2010 Administrators

Summary
In this chapter, we looked at how to modify the look and feel of a site using Windows
PowerShell. In the first scenario, we demonstrated how to manage themes by retrieving
the current theme from a site, displaying all themes available in a site collection, and
applying new themes to a site.

In the second scenario, we created a Windows PowerShell function that changed
the site icon to use the URL we passed to the function. This was achieved by changing
the properties of the corresponding SPWeb object. We also looked at changing the site
title and description.

The chapter continued with examples of how to customize navigation by adding
new items to the Quick Launch bar and to the global navigation.

The theme and navigation settings can be changed through the user interface.
However, when you want to apply themes, logos, or navigation items to many sites or
throughout the whole SharePoint environment, using Windows PowerShell is easier and
more efficient.

Figure 13-2. Modifying navigation through the user interface

215

CHAPTER 14 Working with
SharePoint Lists

216 PowerShel l for Microsoft SharePoint 2010 Administrators

One of the most powerful features in SharePoint from an end-user perspective is
the ease of creating and customizing lists with columns and views so that they
suit their business needs. Managing lists, columns, and views is not usually

a day-to-day task for SharePoint administrators, but occasionally, you may need to
work with them. For instance, you might need to create or modify a large number of
columns in different lists on different sites—creating a Windows PowerShell script that
automates this task will save you hours of work.

In this chapter, we will look at several ways that Windows PowerShell can assist
with list management. In our first scenario, we will create both out-of-the-box and
custom lists, and demonstrate how to wrap Windows PowerShell code in reusable
functions. In our second scenario, we will take the lists created in the first scenario and
modify them by adding new columns.

SharePoint offers a very powerful way to sort and filter the data in lists with the use
of list views. The third scenario in this chapter shows how to modify existing list views
and create new custom list views using Windows PowerShell.

The examples in this chapter also describe the concepts of optimizing the
performance and minimizing memory utilization when working with lists using
Windows PowerShell.

Managing SharePoint Lists
Using Windows PowerShell, you can create any of the types of lists supplied with
SharePoint 2010, as well as custom lists.

Creating a New List
Let’s start with creating a new Contacts list. The first step is to bind to the site that will
contain the new list.

PS > $spWeb = Get-SPWeb -Identity "http://nimaintra.net/site"

You can use the ListTemplates property of the SPWeb object to see the available
list templates. In this example, we choose to return the name and description of each of
the available templates.

PS > $spWeb.ListTemplates | Select-Object -Property Name, Description |

>> Format-Table -AutoSize

Name Description

---- -----------

Document Library A place for storing documents or oth...

Form Library A place to manage business forms lik...

Wiki Page Library An interconnected set of easily edit...

Picture Library A place to upload and share pictures.

Links A list of web pages or other resources.

217Chapter 14: Working with SharePoint L ists

Announcements A list of news items, statuses and o...

Contacts A list of people your team works wit...

Calendar A calendar of upcoming meetings, dea...

Discussion Board A place to have newsgroup-style disc...

Tasks A place for team or personal tasks.

Project Tasks A place for team or personal tasks. ...

Issue Tracking A list of issues or problems associa...

Custom List A blank list to which you can add yo...

Custom List in Datasheet View A blank list which is displayed as a...

External List Create an external list to view the ...

Survey A list of questions which you would ...

Asset Library A place to share, browse and manage ...

Custom Workflow Process Custom Workflow Process tracking lis...

Data Connection Library A place where you can easily share f...

Workflow History This list is used by SharePoint to s...

No Code Workflows Gallery for storing No Code Workflows

Data Sources Gallery for storing data source defi...

No Code Public Workflows Gallery for storing No Code Public W...

When creating a list in SharePoint 2010 programmatically, you use the Add method
of the SPListCollection class. This method has seven overloads (method signatures,
or ways in which the method can be called). The one we will be using for our example
accepts three parameters: the list title, description, and template type to be used. The title
and description parameters are both of the type System.String, and the template
parameter is of the type SPListTemplateType, so we need to provide an instance of
this type as value for this parameter.

Here, we create a variable containing the Contacts list template type, which we obtain
from the Microsoft.SharePoint.SPListTemplateType enumeration:

PS > $listTemplate = [Microsoft.SharePoint.SPListTemplateType]::Contacts

PS > $spListCollection = $spWeb.Lists

PS > $spListCollection.Add("My Contacts","Description",$listTemplate)

Why do we need this intermediary spListCollection variable? Why not call the
Add method directly with $spWeb.Lists.Add? If we used the Add method directly
and repeated the command ten times, the metadata for all available lists in the site
would be loaded ten times. Storing the lists collection in a variable and working with
that variable minimizes the amount of memory consumed, since the lists are loaded
only once.

Creating a Custom List
You can also create custom lists.

PS > $listTemplate = $spWeb.ListTemplates |

>> Where-Object { $_.Name -eq "Custom List" }

PS > $spListCollection.Add("My Custom List","Description",$listTemplate)

218 PowerShel l for Microsoft SharePoint 2010 Administrators

Instead of passing it an instance of the SPListTemplateType class, we retrieve an
SPListTemplate object from the ListTemplates property and store it in a variable
that we use when creating the list.

The GetNames static method of the System.Enum class displays the correct
enumeration values for the list templates types.

PS > [System.Enum]::GetNames("Microsoft.SharePoint.SPListTemplateType")

You can also use the ListTemplates collection and select the Name and Type
properties.

PS > $spWeb.ListTemplates |

>> Format-Table -AutoSize -Property @{Label="Template

Name";Expression={$_.Name}},

>> @{Label="Type";Expression={[int]$_.Type};Alignment="Left"}

This approach displays only the templates available in a particular site (based on a
particular site template).

We can ease list creation by using a function, such as the following New-SPList
function.

function New-SPList (

 [string]$url,

 [string]$name,

 [string]$description,

 [string]$template,

 [switch]$showTemplate

) {

 $spWeb = Get-SPWeb -Identity $url

 if ($showTemplate) {

 $spWeb.ListTemplates |

 Format-Table -AutoSize -Property `

 @{Label="Template Name";Expression={$_.Name}},

 @{Label="Type";Expression={[int]$_.Type};Alignment="Left"};

 } else {

 $spListCollection = $spWeb.Lists

 $spListCollection.Add($name, $description, $template)

 }

 $spWeb.Dispose()

}

You can use the function by typing the following:

PS > New-SPList -url http://nimaintra.net/site -name "My Calendar" `

>> -description "My Custom Calendar" -template 106

219Chapter 14: Working with SharePoint L ists

In this example, we use a numeric value as input to the Template parameter.
To find out a template’s corresponding numeric Type value, you can use the
showTemplate switch parameter.

PS > New-SPList -url http://nimaintra.net/site -showTemplate

When creating a list using the SharePoint object model and the simple Add
method overload that we used in our function, the list may not appear on the Quick
Launch navigation bar (based on the value of the OnQuickLaunch property of the
corresponding list template), so we may need to add this link manually. We can achieve
this by setting the OnQuickLaunch property to True. The property is provided by the
SPList class, so first we need to retrieve an instance of SPList containing the list we
just created.

Getting List Instances
The simplest way of getting a instance of our new list is by typing this:

PS > $spWeb.Lists["My Calendar"]

The problem with this line of code is that it loads the metadata of all available lists,
then performs a comparison of the Title property, and finally returns the lists where
the title matches. This approach might consume a lot of memory if performed against
a site with many lists.

A better approach is to use the GetList method supported by SPWeb. The
GetList method accepts a list’s full or relative URL as input. In this example, we
use a site-relative URL:

PS > $spList = $spWeb.GetList("/Lists/My Calendar")

The following Get-SPList function also retrieves a list instance.

function Get-SPList([uri]$url) {

 # Nullify variables $site, $web and $list

 $site = $web = $list = $null

 # Get site collection

 $site = New-Object -TypeName Microsoft.SharePoint.SPSite `

 -ArgumentList $(

 [Microsoft.SharePoint.Utilities.SPEncode]::UrlDecodeAsUrl($url.AbsoluteUri)

);

 # Get site-relative URL

 $webURL = ([Microsoft.SharePoint.Utilities.SPEncode]::UrlDecodeAsUrl(

 $url.AbsoluteUri)

) -replace $site.Url;

 # Remove query information if included

 if (-not [string]::IsNullOrEmpty($url.Query)) {

 $webURL = $webURL.Replace($url.Query, [string]::Empty);

 }

220 PowerShel l for Microsoft SharePoint 2010 Administrators

 # Process the array of segments backwards,

 # removing segments one by one from the end of the URL,

 # until the URL of the lowest level subsite is identified

 -1..-($url.Segments.Count) | ForEach-Object {

 if ($web -eq $null) {

 # Once the correct URL is obtained, initialize a variable containing an

 # instance of SPWeb class for the lowest level subsite

 if($webUrl -eq "/"){

 $identity = $webUrl

 } else {

 $identity = $webUrl.Trim("/")

 }

 $web = Get-SPWeb -Site $site -Identity $identity `

 -ErrorAction SilentlyContinue;

 $webUrl =

 $webUrl -replace `

 [Microsoft.SharePoint.Utilities.SPEncode]::UrlDecodeAsUrl(

 $url.Segments[$_]

);

 }

 }

 if ($web -ne $null) {

 0..($url.Segments.Count - 1) | ForEach-Object {

 $listUrl += $url.Segments[$_];

 if ($list -eq $null) {

 $list = $(trap {continue}; $web.GetList($listUrl.TrimEnd("/")));

 }

 }

 }

 $web.Dispose();

 $site.Dispose();

 return $list;

}

You can use the function by typing the following:

PS > $spList = Get-SPList -url "http://nimaintra.net/site/Lists/My Calendar"

NOTE From this point on, we’ll use the Get-SPList function in all functions and scripts that
handle lists and libraries in SharePoint 2010.

Adding Lists to the Quick Launch Bar
When you have retrieved an instance of SPList using any of the methods
demonstrated previously, you can set the OnQuickLaunch property to True and
update the list. This will add a link to a list in the Quick Launch bar.

221Chapter 14: Working with SharePoint L ists

PS > $spList.OnQuickLaunch = $true

PS > $spList.Update()

The Set-SPListOnQuickLaunch function shown next demonstrates how to add
and remove lists from the Quick Launch navigation. The function uses the Get-SPList
function presented in the previous section to retrieve an instance of SPList.

function Set-SPListOnQuickLaunch ([uri]$url, [switch]$add,

[switch]$remove) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 if($spList) {

 if($add) {

 $spList.OnQuickLaunch = $true;

 }

 if($remove) {

 $spList.OnQuickLaunch = $false;

 }

 $spList.Update();

 }

}

The Set-SPListOnQuickLaunch function either adds or removes a link to a list
from the Quick Launch bar. To add a list, type this:

PS > Set-SPListOnQuickLaunch `

>> -url "http://nimaintra.net/site/Lists/My Calendar" -add

To remove a list, use the –remove switch.

PS > Set-SPListOnQuickLaunch `

>> -url "http://nimaintra.net/site/Lists/My Calendar" -remove

Deleting Lists
You can also delete lists in SharePoint 2010 using Windows PowerShell. Simply retrieve
the list using the Get-SPList function, and then use the Delete method provided by
the SPList class.

PS > $spList = Get-SPList -url "http://nimaintra.net/site/Lists/My Calendar"

PS > $spList.Delete()

The following is a function that you can use to delete a list from SharePoint 2010.

function Remove-SPList([string]$url) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

222 PowerShel l for Microsoft SharePoint 2010 Administrators

 if($spList) {

 $spList.Delete();

 }

}

Run the Remove-SPList function as follows:

PS > Remove-SPList -url "http://nimaintra.net/site/Lists/My Calendar"

NOTE Lists in SharePoint 2010 have other properties that you can manipulate using Windows
PowerShell. You can use the Get-Member cmdlet to find out more about the available methods
and properties of the SPList class.

Managing SharePoint Fields
You can also add fields to lists using Windows PowerShell. You can display the
available types of fields using the FieldTypeDefinitionCollection property of the
SPWeb class. In the following example, we send the output through a pipeline to the
Select-Object cmdlet and display the TypeName and TypeDisplayName properties.

PS > $spWeb.FieldTypeDefinitionCollection |

>> Select-Object -Property TypeName, TypeDisplayName

TypeName TypeDisplayName

-------- ---------------

Counter Counter

Text Single line of text

Note Multiple lines of text

Choice Choice

MultiChoice Choice

GridChoice Rating Scale

Integer Integer

Number Number

Decimal Decimal

Currency Currency

DateTime Date and Time

Lookup Lookup

Boolean Yes/No

User Person or Group

URL Hyperlink or Picture

Here, we’ve shown only a fraction of the field types available in SharePoint 2010.

223Chapter 14: Working with SharePoint L ists

Creating a New Field
Before we add a field to a list, we first retrieve the list using the Get-SPList function.

PS > $spList = Get-SPList -url "http://nimaintra.net/site/Lists/My Custom List"

To create a field in a SharePoint 2010 list, you use the Add method provided by the
SPFieldCollection class. Here, we create a simple Text type field in a SharePoint list:

PS > $spFieldType = [Microsoft.SharePoint.SPFieldType]::Text

PS > $spList.Fields.Add("TextField",$spFieldType,$false)

In this example, we create an SPFieldType object with the value Text and store
it in the variable spFieldType. We then use the Add method and pass in the field’s
display name, followed by the variable spFieldType, followed by Boolean False.
The last parameter in this overload of the Add method specifies whether the new field
is required to always contain a value. Our example creates a new text field in the list
with the display name of TextField that will not require any input. An additional
Boolean parameter you can use with the Add method compacts the field name to eight
characters if set to True.

The following wraps the field-creation code in a reusable function.

function New-SPTextField([string]$url, [string]$field,[switch]$required) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 if($spList) {

 $spFieldType = [Microsoft.SharePoint.SPFieldType]::Text

 $spList.Fields.Add($field, $spFieldType, $required)

 }

}

Here’s an example of using this function to create a new mandatory text field
named My Field, in the My Custom List list:

PS > New-SPTextField -url "http://nimaintra.net/site/Lists/My Custom List" `

>> -field "My Field" -required

A field in SharePoint 2010 has a few properties that you can set to change how the
field is displayed. Before you can change the properties of a field, you need to retrieve
it. You can either use the GetField method provided by the SPFieldCollection
class or simply index into the collection.

PS > $spField = $spList.Fields.GetField("My Field")

PS > $spField = $spList.Fields["My Field"]

The first example demonstrates how to use the GetField method to retrieve an
existing field and store the object in a variable. The second example demonstrates how
to index into the collection. Note that both forms are case-sensitive.

224 PowerShel l for Microsoft SharePoint 2010 Administrators

You can use the Get-Member cmdlet to display all the methods and properties
available on the object.

PS > $spField | Get-Member

Many of the properties available are “get/set,” meaning that you can get the values
from the properties and set new values. Here’s how to set a description for the field:

PS > $spField.Description = "A Simple Text Field"

It is also possible to hide the field from various forms in SharePoint. In the next
example, we hide the field from the Edit Item form so that when end users try to edit
a list item in SharePoint 2010, they will not be able to edit the text field, since it will
simply not appear.

PS > $spField.ShowInEditForm = $false

PS > $spField.Update()

We call the Update method to commit the changes to the SharePoint 2010 content
database.

You can add other types of fields as well, such as Note, Number, Decimal,
Currency, and so on. Here is an example on adding an Integer type field using
Windows PowerShell:

PS > $spFieldType = [Microsoft.SharePoint.SPFieldType]::Integer

PS > $spList.Fields.Add("NumericField", $spFieldType, $false)

This new field will accept only numeric values.

Adding a Choice Field
Adding a Choice type field is a little different since it requires additional information
regarding the possible choices. You can store the choices in an instance of the System
.Collections.Specialized.StringCollection class, as shown in this example:

PS > $choices = New-Object System.Collections.Specialized.StringCollection

PS > $choices.Add("First Choice")

PS > $choices.Add("Second Choice")

PS > $choices.Add("Third Choice")

Now that we have our choices stored in a variable, we can use the variable when
creating a Choice type field.

PS > $spFieldType = [Microsoft.SharePoint.SPFieldType]::Choice

PS > $spList.Fields.Add("ChoiceField",$spFieldType,$false,$false,$choices)

We use the choices variable to associate a list of options with the field.

225Chapter 14: Working with SharePoint L ists

The following demonstrates how to wrap this code in a function.

function New-SPChoiceField(

 [string]$url,

 [string]$field,

 [array]$choices,

 [switch]$required

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 if($spList) {

 $spFieldType = [Microsoft.SharePoint.SPFieldType]::Choice

 $colChoices = New-Object System.Collections.Specialized.StringCollection

 foreach ($choice in $choices) {

 $colChoices.Add($choice) | Out-Null

 }

 $spList.Fields.Add($field,$spFieldType,$required,$false,$colChoices)

 }

}

Run the function by typing the following:

PS > New-SPChoiceField -url "http://nimaintra.net/site/Lists/My Custom List" `

>> -field ‘Pick One’ -choices @(1,2,3)

In this example, we use the function New-SPChoiceField to add the field Pick
One to the My Custom List list. We also add the options 1, 2, and 3 using the -choices
parameter.

The -choices parameter accepts an array as input. A simple way to create an array
is by placing a comma-separated list of values within the @() subexpression, as shown
in the previous example.

When creating a Choice type field using Windows PowerShell, the display format is
set to a drop-down list by default. We can change this to radio buttons, as shown here:

PS > $spField = $spList.Fields.GetField("ChoiceField")

PS > $spField.EditFormat = "RadioButtons"

PS > $spField.Update()

In this example, we retrieve the ChoiceField field by using the GetField method
provided by the SPFieldCollection class. We then change the EditFormat property
to RadioButtons and call the Update method to commit the changes to the content
database.

We can also set a default choice using the DefaultValue property.

PS > $spField = $spList.Fields.GetField("ChoiceField")

PS > $spField.DefaultValue = "Second Choice"

PS > $spField.Update()

226 PowerShel l for Microsoft SharePoint 2010 Administrators

Adding a Lookup Field
To add a lookup field to a SharePoint list, use the AddLookup method of the
SPFieldCollection class. You need to provide the method with the field’s display
name and the ID of the list that the lookup field should point to.

In the next example, we get the ID of an existing list named Tasks, store the ID of
the list in a variable, and use the variable to create a lookup field.

PS > $lookupListId =

>> (Get-SPList -url "http://nimaintra.net/site/Lists/Tasks").Id

PS > $spList.Fields.AddLookup("LookupField",$lookupListId,$false)

The following is the same code wrapped in a function.

function New-SPLookupField (

 [string]$url,

 [string]$lookupListURL,

 [string]$field,

 [switch]$required

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 $lookupListId = (Get-SPList -url $lookupListURL).Id

 if($spList -and $lookupListId) {

 $spList.Fields.AddLookup($field, $lookupListId, $required);

 }

}

Run the function by typing the following:

PS > New-SPLookupField -url "http://nimaintra.net/site/Lists/My Custom List" `

>> -lookupListURL "http://nimaintra.net/site/Lists/Tasks" `

>> -field ‘My Lookup’

In this example, we create a lookup field named My Lookup. The lookup field
points to the Tasks list.

Creating a lookup field that points to a list in a different site requires the list ID and
the site ID. In the following example, we retrieve the list ID and the site ID using the
Get-SPWeb cmdlet, and then use the values with the AddLookup method.

PS > $lookupListId =

>> (Get-SPList -url "http://nimaintra.net/finance/Lists/Tasks").Id

PS > $lookupWebId = (Get-SPWeb -Identity http://nimaintra.net/finance).Id

PS > $spList.Fields.AddLookup("SubsiteLookup",$lookupListId,$lookupWebId,$false)

SharePoint 2010 also supports a dependent lookup field type, which depends on a
primary lookup field for its relationship to the list from which it gets its values. In the

227Chapter 14: Working with SharePoint L ists

following example, we store the primary lookup field’s ID in a variable and use the
variable as input to the AddDependentLookup method of the SPFieldCollection to
create a dependent lookup field.

PS > $spList = Get-SPList -url "http://nimaintra.net/site/Lists/My Custom List"

PS > $primaryFieldId = $spList.Fields["LookupField"].Id

PS > $spList.Fields.AddDependentLookup("Dependent lookup",$primaryFieldId)

A dependent lookup field added using Windows PowerShell points to the Title field
by default. We can change this by editing the field’s LookupField property, as shown
here:

PS > $sourceList = Get-SPList -url "http://nimaintra.net/site/Lists/Tasks"

PS > $spList = Get-SPList -url "http://nimaintra.net/site/Lists/My Custom List"

PS > $spList.Fields["Dependent lookup"].LookupField =

>> $sourceList.Fields["Start Date"].InternalName

PS > $spList.Fields["Dependent lookup"].Update()

In this example, we point the LookupField property to the Start Date field of the
source list.

Managing SharePoint Views
List views in SharePoint 2010 enable you to create customized representations of
list data for specific purposes, such as displaying specific fields. When a new list in
SharePoint is created, a default view is added. Document Library lists get the All
Documents view, Picture Library lists get the All Pictures view, and most of the other
list types get the All Items view.

You can manage the views associated with a SharePoint 2010 list using Windows
PowerShell. Let’s first take a look at how to modify an existing view.

Modifying a View
Before you can edit an existing view in SharePoint 2010, you need to retrieve it. You
can use the GetViewFromUrl method of the SPWeb class. Let’s get the custom list we
created earlier.

PS > $spWeb = Get-SPWeb -Identity "http://nimaintra.net/site"

PS > $spWeb.GetViewFromUrl("/Lists/My Custom List/AllItems.aspx")

You can also retrieve the view from an SPList object using its indexed Views
property.

PS > $spList = Get-SPList -url "http://nimaintra.net/site/Lists/My Custom List"

PS > $spView = $spList.Views["All Items"]

228 PowerShel l for Microsoft SharePoint 2010 Administrators

When you use this approach, all views are loaded into memory, and then a comparison
is made to match each view’s title with the text in the brackets. If you have a list with a lot
of views, it is better to use the GetViewFromUrl method.

In this chapter, we have added a few fields to our custom list. When a field is added
using Windows PowerShell, it is not automatically added to the default view. Let’s add
the text field to the view. First, we need to create a reference to the field that we want to
add to the view.

PS > $spField = $spList.Fields["TextField"]

Then we can use the Add method provided by the SPViewFieldCollection class
to add the field to a view.

PS > $spView.ViewFields.Add($spField)

PS > $spView.Update()

You may also want to change the order in which items are displayed in the list view.
The Query property of the SPView class contains a Collaborative Application Markup
Language (CAML) query that defines the subset of list items that is returned when this
view is selected.

NOTE We are only able to briefly look at how we can use CAML queries as it stretches beyond
the scope of this book. To learn more about CAML and to be able to create more advanced queries,
we recommend looking at the reference found on MSDN at http://msdn.microsoft.com/en-us/library/
dd588106(office.11).aspx.

PS > $spView.Query

<OrderBy><FieldRef Name="ID" /></OrderBy>

In this example, the command returns <OrderBy><FieldRef Name="ID" /></
OrderBy>, which is the CAML query used by the default view. You can change the
query using Windows PowerShell. In the next example, we change the query so that
the items appearing in the view are ordered by the value of Title instead of ID.

PS > $spView.Query = '<OrderBy><FieldRef Name="Title" /></OrderBy>'

PS > $spView.Update()

It is also possible to change the style of a list view using Windows PowerShell.
Retrieve the available view styles from the ViewStyles property.

PS C:\> $spWeb.ViewStyles | Select-Object -Property Title, Id |

>> Format-Table -AutoSize

Title ID

----- --

Basic Table 0

Picture Library Details 6

 7

229Chapter 14: Working with SharePoint L ists

 8

 9

Boxed, no labels 12

Boxed 13

Document Details 14

Newsletter 15

Newsletter, no lines 16

Shaded 17

Issues Boxed 18

Issues Boxed, no labels 19

Preview Pane 20

Notice that the view styles with the IDs of 7, 8, and 9 are missing a title. These are
the Month, Week, and Day View styles used with calendar views.

Let’s go ahead and change the view style for a list view. The next example
demonstrates how to change the view style of the All Items view.

PS > $spView.ApplyStyle($spWeb.ViewStyles.StyleByID(17))

PS > $spView.Update()

In this example, we change to the Shaded view style, which has an ID of 17.

Creating a New View
It is also possible to create a completely new list view using the Add method of the
SPViewCollection class. When adding a new view, you have the option to specify
which fields you want to show in the view. The Add method accepts an object of the
type System.Collections.Specialized.StringCollection as a value for the
parameter that specifies which fields should be added to the view. The string collection
must contain the internal names of the fields. The following is an example of creating
such a string collection.

PS > $viewFields = New-Object System.Collections.Specialized.StringCollection

PS > $viewFields.Add("Title")

PS > $viewFields.Add("TextField")

PS > $viewFields.Add("ChoiceField")

You also have the opportunity to add a custom CAML query to the view. In this
example, we add a query that groups items by the value of the ChoiceField field.

PS > $query = ‘<GroupBy Collapse="TRUE" GroupLimit="30">’ +

>> ‘<FieldRef Name="ChoiceField" /></GroupBy>’

Finally, we create the new view.

PS > $spList.Views.Add("My View",$viewFields, $query, 100, $true, $false)

230 PowerShel l for Microsoft SharePoint 2010 Administrators

Our new view is named My View. We add the fields Title, TextField, and ChoiceField.
We then add the CAML query stored in the query variable. The value 100 is the number
of items that will be displayed per page. The first Boolean value specifies that the view
should display more items page by page, and the last Boolean value specifies if the view
should be set as the default view of the list. Since it is set to False, the view will not be
the default view of the list. The complete New-SPView function follows.

function New-SPView (

 [string]$url,

 [string]$view,

 [array]$fields,

 [string]$query,

 [int]$itemsDisplayed,

 [switch]$paged,

 [switch]$default

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 if($spList) {

 $viewFields = New-Object System.Collections.Specialized.StringCollection

 foreach($field in $fields) {

 $viewFields.Add($field)

 }

 $spList.Views.Add(

 $view, $viewFields, $query, $itemsDisplayed, $paged, $default

)

 }

}

Run the function by typing the following:

PS > New-SPView -url "http://nimaintra.net/site/Lists/My Custom List" `

>> -view "New View" -fields @("Title","TextField") -itemsDisplayed 100 -paged

In this example, we use the New-SPView function to create a new view named New
View in the My Custom List list. We add the fields Title and TextField so that the fields
will be shown in the view. We also specify that 100 items should be displayed per page
and that the view should display more items page by page.

Removing a View
You can remove a view from a SharePoint 2010 list using the Delete method provided
by the SPViewCollection class. The next example shows how to delete the My View
view that we created in a previous example.

PS > $spList = Get-SPList -url "http://nimaintra.net/site/Lists/My Custom List"

PS > $spView = $spList.Views["My View"]

PS > $spList.Views.Delete($spView.Id)

231Chapter 14: Working with SharePoint L ists

In this example, we store the view that we want to delete in a variable before using
the Delete method. Notice that we need to use the view’s ID as input to the Delete
method.

Here is a simple function that deletes views from a SharePoint list:

function Remove-SPView ([string]$url, [string]$view) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 if($spList) {

 $spView = $spList.Views[$view]

 $spList.Views.Delete($spView.Id);

 }

}

We can remove our new view from our SharePoint 2010 list using our Remove-SPView
function, as shown here:

PS > Remove-SPView -url "http://nimaintra.net/site/Lists/My Custom List" `

>> -view 'New View'

Additional Functionality in SharePoint 2010
SharePoint 2010 offers many ways to create and customize lists through the graphical
user interface. Lists can be saved as templates both from SharePoint Designer and from
the browser-based interface. Figure 14-1 shows an example of the custom list template
Nima Project Tasks appearing among the default templates in the list creation dialog
box. Custom list templates are stored at the site collection level and can be found in the
Galleries section of the Site Settings page.

With the use of content types and site columns, SharePoint 2010 offers a way to
manage and control which columns should be available in lists of any given type,
such as Calendar or Contacts. By using content types, it is possible to associate
Microsoft Office Word or PowerPoint templates with document libraries, so that
whenever a user creates a new document in the library, it will be based on the
specified template.

Using content types and site columns is good practice when creating and maintaining
a content structure in your SharePoint 2010 environment. However, in the real world, it
can be very difficult to enforce the use of content types and site columns, especially in
larger environments with a lot of independent site owners.

232 PowerShel l for Microsoft SharePoint 2010 Administrators

Summary
In this chapter, we demonstrated how to create SharePoint lists, fields, and list views
using Windows PowerShell. Even though this is an easy task to perform through the
graphical user interface, there are situations where scripting SharePoint lists, fields, and
views can save you a lot of time.

We also looked at some important concepts around how to optimize scripts by
using the GetList and GetField methods to minimize the memory usage. You saw
how to use CAML queries when managing list views. In the next chapter, which covers
managing content in SharePoint list items, we will look at some other scenarios where
CAML queries are useful.

Figure 14-1. Custom list templates are displayed when creating new lists.

233

CHAPTER 15 Managing SharePoint
List Items

234 PowerShel l for Microsoft SharePoint 2010 Administrators

SharePoint 2010 offers the functionality to change the properties of multiple list
items at the same time using the Datasheet view. Updating multiple items at the
same time is also a viable task for Windows PowerShell and could be very useful

when updating items across multiple lists.
In this chapter, we will cover automating the procedures of creating, updating, and

deleting list items using Windows PowerShell. The last example demonstrates how to
use Windows PowerShell to copy list items from one list to another list. The destination
list can be located in a different site, and with modification to the script, it could even
be in a different SharePoint farm.

Knowing how to work with list items using Windows PowerShell will come
in handy when creating more complex scripts that need to interact with content in
SharePoint lists. We presented an example of this usage in Chapter 11, where we
created a script that checked for items in the request site list with a specific status, and
if found, created a new site collection.

Creating List Items
For the examples in this chapter, we will use a custom list containing a variety of
fields, as shown in Figure 15-1. This custom list contains fields of the following types:
Text (single line of text), Note (multiple lines of text), Choice, Number, Currency,
DateTime, Lookup, Boolean (yes/no), User (person or group), and URL (hyperlink or
picture).

We’ll begin by creating some new list items using Windows PowerShell. First,
we need to retrieve a list object. Here, we use the Get-SPList function presented in
Chapter 14.

PS > $spList = Get-SPList -url "http://nimaintra.net/Lists/Custom List"

The SPList class provides the AddItem method, which is used to create new
list items. When you call the AddItem method, an object of the type Microsoft
.SharePoint.SPListItem is returned.

Since we want to populate the properties of the new list item, we need to store the
object in a variable in order to continue to work with it.

PS > $spListItem = $spList.AddItem()

Now we can start assigning values to the different fields the corresponding list item
inherits from the parent list. The SPListItem class provides a parameterized Item
property for accessing the value contained in a particular field. To specify the value of
the Title field, we can use the following:

PS > $spListItem.Item("Title") = "My new ListItem"

235Chapter 15: Managing SharePoint L ist Items

Because the Item property is also an indexer for this class (more information is
available at http://msdn.microsoft.com/en-us/library/microsoft.sharepoint.splistitem
.aspx), we can also access field values simply using the indexing notation: placing the
field’s name within [" "]. So, our previous example could also be in this form:

PS > $spListItem["Title"] = "My new ListItem"

Figure 15-1. Custom list in SharePoint 2010

236 PowerShel l for Microsoft SharePoint 2010 Administrators

In this example, we assign the value My new ListItem to the list item’s Title field.
Note that the field name is case-sensitive! Since the Title field is a single line of text
type, we assign a System.String value to it.

The second field in the list is a multiple lines of text type, so we can assign a
System.String value that spans multiple lines. A simple way of creating this kind
of value is by using a here-string. A here-string is typically used for storing text with
newlines, quotation marks, and other characters commonly found in large chunks of
text. In Windows PowerShell, a here-string begins with the characters @" followed by a
new line and ends with the "@ characters. In the next example, we store a here-string in
a variable, and then use the variable as value for the Notes field.

PS > $multipleLines = @"

>> First Line

>> Second Line

>> Third Line

>> "@

PS > $spListItem["Notes"] = $multipleLines

The next field that we want to add a value to is the Choices field. In this type of
field, we must add values that match the options available in the field. In this example,
the field supports the options First Choice, Second Choice, and Third Choice. We assign
a value of Second Choice to the Choices field.

PS > $spListItem["Choices"] = "Second Choice"

NOTE If a Choice type field accepts multiple values, use the ; character to separate them.

For the Number field, which can contain only numeric values, we can simply type
a number as input, since Windows PowerShell automatically interprets numbers as
System.Int32 or System.Double, depending on the value.

PS > $spListItem["Number"] = 1.8

In this example, we use 1.8 as input, and Windows PowerShell will interpret the
number as a System.Double object.

Like the Number type field, a Currency type list field accepts numeric values. The
next example shows how to add a value to this field.

PS > $spListItem["Currency"] = 10

The DateTime type list field accepts values that can be interpreted as date and time
designators. Windows PowerShell includes the Get-Date cmdlet, which we can use
when working with such fields in SharePoint 2010.

PS > $spListItem["Date"] = Get-Date

237Chapter 15: Managing SharePoint L ist Items

The YesNo field accepts Boolean values. This example shows how to supply a value
of True as input.

PS > $spListItem["YesNo"] = $true

The Lookup field type differs a little from the previous examples because fields of
this type contain just a reference to a list item that exists in a different list. In SharePoint
2007, the value added to a lookup field needed to start with the list item’s ID followed
by ";#", followed by the list item’s title. This also works in SharePoint 2010, as shown
in the following example, in which we retrieve a list item from the Announcements list
and create a string value that matches the lookup field format.

PS > $spAnnouncementsList =

>> Get-SPList -url "http://nimaintra.net/Lists/Announcements"

PS > $spLookupListItem = $spAnnouncementsList.GetItemById(1)

PS > $strLookupListItem =

>> [string]$spLookupListItem.ID + ";#" + $spLookupListItem.Title

Here, we store the reference to the Announcements list in a variable and use the
GetItemById method to retrieve a list item. We then use the ID and Title properties
of the SPListItem object to create a string that we can use as value for a lookup
field. We also explicitly cast the ID as a System.String object; otherwise, Windows
PowerShell will attempt to interpret all the values as System.Int32, and an error will
occur. Here is the resulting string value:

PS > $strLookupListItem

1;#Get Started with Microsoft SharePoint Foundation!

We can then use our variable as the value for the lookup field.

PS > $spListItem["Lookup"] = $strLookupListItem

In SharePoint 2010, you can also use a list item object as value to a lookup field
directly, instead of creating a string in a specific format.

PS > $spListItem["Lookup"] =

>> (Get-SPList "http://nimaintra.net/Lists/Announcements").

GetItemById(1)

Person or group type fields are similar to lookup fields in that they support values
that follow the ID;#Title format, where Title is the display name of the user or
group to add. In fact, these fields are lookup fields that, behind the scenes, reference the
hidden User Info list in each site collection.

238 PowerShel l for Microsoft SharePoint 2010 Administrators

In SharePoint 2010, you can use the Get-SPUser cmdlet to return a user account
from a SharePoint site. Just as with lookup fields, you can either create a string value
that follows the ID;#Title format or use an SPUser object as input. The following
example shows how to retrieve the account of user Kenny Bania and use it as the value
for the field.

PS > $spUser = Get-SPUser -Web http://nimaintra.net `

>> -Identity POWERSHELL\kennybania

PS > $spListItem["Person or Group"] = $spUser

The last field in our example is a hyperlink or picture field. The valid format of
a value for a field of this type is an address, followed by a comma, followed by a
description, as shown here:

PS > $spListItem["Hyperlink"] =

>> "http://www.powershell.nu, Windows PowerShell blog"

When we have assigned values to all the fields of our new item, we call the Update
method to commit the changes to the SharePoint 2010 content database.

PS > $spListItem.Update()

The following is the New-SPListItem function, which creates new list items
in a SharePoint 2010 list. The function uses the Get-SPList function described in
Chapter 14.

function New-SPListItem ([string]$url) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 return $spList.AddItem();

}

And here is an example of this function in action:

PS > $spListItem = New-SPListItem -url "http://nimaintra.net/Lists/Custom List"

PS > $spListItem["Title"] = "My List Item"

PS > $spListItem.Update()

Figure 15-2 shows the new item added to the list.

239Chapter 15: Managing SharePoint L ist Items

Updating List Items
The SPList class provides a few methods we can use to retrieve an item from a list in
SharePoint 2010. The following methods are the most commonly used:

GetItemById, which requires that we know the ID of the particular item

GetItems, which is used to return all list items or a subset of list items as
defined by search criteria in a CAML query

First, let’s take a look at the GetItemById method. The method takes the ID of a list
item as input and returns a SPListItem object. This example shows how to retrieve
the list item with the ID of 1 from a list and store it in a variable.

PS > $spList = Get-SPList -url "http://nimaintra.net/Lists/Custom List"

PS > $spListItem = $spList.GetItemById(1)

Figure 15-2. List item created using Windows PowerShell

240 PowerShel l for Microsoft SharePoint 2010 Administrators

Once we have a list item stored in a variable, we can get or set any of the field
values available. In the following example, we retrieve the list item’s title.

PS > $spListItem["Title"]

My new ListItem

We can change the list item’s title by assigning a new value and calling the Update
method.

PS > $spListItem["Title"] = "New Title"

PS > $spListItem.Update()

The GetItems method is better suited if you want to retrieve multiple items. You
can use the GetItems method without any input, which will return all list items.
Alternatively, you can use a CAML query to select specific list items.

To use a CAML query with the GetItems method, we first need to create an object
of the type Microsoft.SharePoint.SPQuery.

PS > $spQuery = New-Object Microsoft.SharePoint.SPQuery

The SPQuery object supports the Query property, which we use to place a CAML
query. Here’s the CAML query we’ll use in our example:

PS > $camlQuery =

>> '<Where>

>> <Eq>

>> <FieldRef Name="YesNo" />

>> <Value Type="Text">True</Value>

>> </Eq>

>> </Where>'

>>

We create a new query containing a Where statement using the <Where> tag. Next,
we specify an equals expression using the <Eq> tag. For other types of searches, you
can replace this tag with the appropriate one, such as <Lt> or <Gt> to search for list
items where the value of this field is less than or greater than a value, respectively.

We then specify the field we want to query against using the <FieldRef> tag. In
this example, we want to look at the YesNo field in the list.

Finally, we use the <Value> tag to specify that the value type is Text and that the
value should equal True.

Once we have created a CAML query and stored it in a variable, we assign it to the
Query property of our SPQuery object.

PS > $spQuery.Query = $camlQuery

Before using the SPQuery with the GetItems method, we should specify the
RowLimit property that is used to limit the amount of items returned per page.

241Chapter 15: Managing SharePoint L ist Items

If we run the SPQuery without setting the row limit, the query will select all items
matching the criteria, and might fail on lists with a large number of items.

PS > $spQuery.RowLimit = 100

Here, we set the RowLimit property to 100 so that only 100 list items are returned
per page. The RowLimit value should be between 1 and 2000.

Finally, we can call the GetItems method with the SPQuery object instance we
created earlier for input.

PS > $spListItemCollection = $spList.GetItems($spQuery)

In this example, we retrieve list items wrapped up in a SPListItemCollection
object and store this object in a variable. We can now use the ForEach-Object cmdlet
to iterate through the items and perform an action. In the next example, we change the
text in the Notes field to “Updated using Windows PowerShell.”

PS > $spListItemCollection | ForEach-Object {

>> $_["Notes"] = "Updated using Windows PowerShell"

>> $_.Update()

>> }

The Get-SPListItem function uses a CAML query to retrieve list items where the
value of a specified field equals the value assigned to the function’s –value parameter.
The following is the complete function.

function Get-SPListItem (

 [string]$url,

 [string]$field,

 [string]$value,

 [int]$rowLimit = 100

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 # Create Query based on field and value

 $camlQuery =

 '<Where><Eq><FieldRef Name="' +

 $field +

 '"/><Value Type="' +

 $spList.Fields[$field].Type +

 '">' +

 $value +

 '</Value></Eq></Where>';

 # SPQuery object

 $spQuery = New-Object Microsoft.SharePoint.SPQuery;

242 PowerShel l for Microsoft SharePoint 2010 Administrators

 # Add query

 $spQuery.Query = $camlQuery;

 # Set rowlimit

 $spQuery.RowLimit = $rowLimit;

 return $spList.GetItems($spQuery);

}

You can use the function by typing the following:

PS > $spListItem = Get-SPListItem `

>> -url "http://nimaintra.net/Lists/Custom List" `

>> -field Title -value "My List Item"

In this example, we use the Get-SPListItem function to retrieve all list items from
the Custom List list where the Title field value equals My List Item.

Using the GetItems method without a CAML query returns a
SPListItemCollection containing all items in the list. The following is
an example of this.

PS > $spListItemCollection = $spList.GetItems()

You can use the Where-Object cmdlet to retrieve individual list items from the
SPListItemCollection that match specified criteria. In the following example, we
retrieve all list items where the value of the YesNo field equals True.

PS > $spListItemCollection | Where-Object { $_["YesNo"] -eq "True" }

If we want to perform an action on the list items where the value of the YesNo field
equals True, we can use the ForEach-Object cmdlet, as shown here:

PS > $spListItemCollection | Where-Object { $_["YesNo"] -eq "True" } |

>> ForEach-Object {

>> $_["Choices"] = "Third Choice"

>> $_.Update()

>>}

In this example, we change the value of the Choices field to Third Choice.

NOTE When using the GetItems method without a CAML query, all the items in the list are
read into memory; therefore, large lists may consume a lot of memory.

Deleting List Items
To delete items from a list in SharePoint 2010, use the Delete method provided by the
SPListItem class. In the next example, we use the GetItemById method to retrieve a
list item, and then remove the item.

PS > $spList = Get-SPList -url http://nimaintra.net/Lists/Custom List"

PS > $spListItem = $spList.GetItemById(1)

PS > $spListItem.Delete()

243Chapter 15: Managing SharePoint L ist Items

Using the Delete method to remove a large number of list items will take time and
consume a lot of memory, since it loads each list item into memory. A better approach
to removing many items from a list is to use the ProcessBatchData method provided
by the SPWeb class. First, you need a collection of the list items you want to remove,
and then you can use the Get-SPListItem function to retrieve a list of items that
match a given criteria, as shown in this example:

PS > $spListItemCollection =

>> Get-SPListItem -url "http://nimaintra.net/Lists/Custom List" `

>> -field Choices -value "Second Choice"

Now that we have a populated list item collection, we can create a CAML command
string that we will use to remove all the list items in the list item collection. The first
part of the CAML string contains the XML declaration followed by the <Batch> tag.

PS > $batchRemove = '<?xml version="1.0" encoding="UTF-8"?><Batch>'

Next, we need to add a batch string of commands for each list item that we want
to delete. The CAML string used in the next example starts with the <Method> tag
followed by the <SetList Scope="Request"> tag where we define the scope.

PS > $command = '<Method><SetList Scope="Request">' +

>> $spList.ID +

>>'</SetList><SetVar Name="ID">{0}</SetVar>' +

>> '<SetVar Name="Cmd">Delete</SetVar></Method>'

In this example, we use the ID from the current list as value. Next, we use the
<SetVar Name="ID"> and set that {0} should be the value. Finally, we use the
<SetVar Name="Cmd"> tag and specify Delete as the type of command to be
executed.

After we have created a CAML string, we will loop through each list item and
append the query to the batchRemove variable.

PS > foreach ($item in $spListItemCollection) {

>> $batchRemove += $command -f $item.Id

>> }

Notice how we use the –f operator to replace the format string {0} with each list
item’s ID.

Finally, we complete the CAML query by closing the <Batch> tag.

PS > $batchRemove += "</Batch>"

The last step is to execute the command using the ProcessBatchData method of
the SPWeb class.

PS > $spList.ParentWeb.ProcessBatchData($batchRemove) | Out-Null

244 PowerShel l for Microsoft SharePoint 2010 Administrators

The following function, Remove-SPListItem, demonstrates how to wrap the code
in a reusable function so that we can remove one or more list items with a single line
of code.

function Remove-SPListItem (

 [string]$url,

 [string]$field,

 [string]$value,

 [int]$rowLimit = 100

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 # Create Query based on field and value

 $camlQuery =

 '<Where><Eq><FieldRef Name="' +

 $field +

 '"/><Value Type="' +

 $spList.Fields[$field].Type +

 '">' +

 $value +

 '</Value></Eq></Where>';

 $spQuery = New-Object Microsoft.SharePoint.SPQuery;

 $spQuery.Query = $camlQuery;

 $spQuery.RowLimit = $rowLimit;

 $spListItemCollection = $spList.GetItems($spQuery);

 # Create batch remove CAML query

 $batchRemove = '<?xml version="1.0" encoding="UTF-8"?><Batch>';

 # The command is used for each list item retrieved

 $command = '<Method><SetList Scope="Request">' +

 $spList.ID +'</SetList><SetVar Name="ID">{0}</SetVar>’ +

 ‘<SetVar Name="Cmd">Delete</SetVar></Method>';

 foreach ($item in $spListItemCollection) {

 # Loop through each list item and add the string

 # to the batch command

 $batchRemove += $command -f $item.Id;

 }

 $batchRemove += "</Batch>";

245Chapter 15: Managing SharePoint L ist Items

 # Remove the list items using the

 # batch command

 $spList.ParentWeb.ProcessBatchData($batchRemove) | Out-Null

}

Run the function by typing the following:

PS > Remove-SPListItem -url "http://nimaintra.net/Lists/Custom List" `

>> -field Choices -value "Second Choice"

This example removes all list items where the value of the Choices field equals
Second Choice. The script removes list items in batches of 100, as it is specified as the
default value in the function.

Copying List Items
To copy items from one list in SharePoint 2010 to another list, you can use the AddItem
method provided by the SPListItem class, just as when you create new list items. The
difference is that you read the field values from an existing list item and create a new
list item in another list based on these values. This requires that both lists contain the
same fields.

The first step in copying list items from a list in SharePoint 2010 is retrieving the
items from the source list. You can do this by using the GetItems method provided by
the SPList class. In this example, we use the Announcements list.

PS > $sourceSPList = Get-SPList -url "http://nimaintra.net/Lists/Announcements"

PS > $sourceSPListItemCollection = $sourceSPList.GetItems()

Some fields in either list are marked as read-only, so we cannot copy the values of
those fields. We can handle this by looping through each field and checking if it is a
read-only field. In this example, we store the available fields in a variable so that we
can use it when we loop through the list items.

PS > $sourceSPFieldCollection = $sourceSPList.Fields

We also need to bind to the destination list. In this example, we retrieve the
Announcements list from a different site.

PS > $destinationSPList =

>> Get-SPList -url "http://nimaintra.net/Site/Lists/Announcements"

Once we have retrieved the source list items and bound to the destination list,
we can loop through each item and create it in the destination list. First, we open a
foreach loop.

PS > foreach($spListItem in $sourceSPListItemCollection) {

246 PowerShel l for Microsoft SharePoint 2010 Administrators

In the foreach loop, we start by creating a new list item in the destination list.

>> $newSPListItem = $destinationSPList.AddItem()

Then we loop through each field stored in the spFieldCollection variable to
exclude read-only fields and the Attachments field using an if statement. Copying the
attachments requires a different approach, so we will handle them later in the loop.

>> foreach($spField in $sourceSPFieldCollection) {

>> if($spField.ReadOnlyField -ne $True -and `

>> $spField.InternalName -ne "Attachments") {

We then assign the values of every other field that is not read-only to the
corresponding field of the new list item in the destination list. We also close the if
statement and the foreach loop.

>> $newSPListItem[$($spField.InternalName)] =

>> $spListItem[$($spField.InternalName)]

>> }#end if

>> }#end foreach

Next, we handle the attachments. When adding attachments to a list item, we use
the Add method provided by the SPAttachmentCollection class. The Add method
supports the leafName parameter, which accepts a string containing the name of the
file to be attached, and the data parameter, which accepts a byte array containing the
actual attachment. First, we loop through the names of the list item’s attachments.

>> foreach($leafName in $spListItem.Attachments) {

Next, we retrieve the actual attached file using the GetFile method provided by
the SPWeb class. The GetFile method accepts a URL as input. We build the URL based
on the UrlPrefix property of the SPAttachmentCollection object followed by the
current attachment’s name.

>> $spFile = $sourceSPList.ParentWeb.GetFile(

>> $($spListItem.Attachments.UrlPrefix + $leafName)

>>)

Once we have the SPFile object stored in a variable, we can use the OpenBinary
method to retrieve the corresponding byte array and add the attachment to the new
list item.

>> $newSPListItem.Attachments.Add($leafName, $spFile.OpenBinary())

>> } #end foreach

The last step is to commit the changes in the destination list using the Update
method.

>> $newSPListItem.Update()

>> #end foreach

247Chapter 15: Managing SharePoint L ist Items

The function Copy-SPListItem, shown next, wraps up all the code used in this
example.

function Copy-SPListItem ([string]$source, [string]$destination) {

 # Get source list

 $sourceSPList = Get-SPList -url $source

 $sourceSPFieldCollection = $sourceSPList.Fields;

 $sourceSPListItemCollection = $sourceSPList.GetItems();

 # Get destination list

 $destinationSPList = Get-SPList -url $destination

 # Loop through each list Item and copy to destination list

 foreach($spListItem in $sourceSPListItemCollection) {

 # Create new Item

 $newSPListItem = $destinationSPList.AddItem();

 foreach($spField in $sourceSPFieldCollection) {

 # At first check fields that are not read only and attachments

 if ($spField.ReadOnlyField -ne $True -and `

 $spField.InternalName -ne "Attachments") {

 # Store value in new SPListItem object

 $newSPListItem[$($spField.InternalName)] =

 $spListItem[$($spField.InternalName)];

 }

 }

 # Handle Attachments

 foreach($leafName in $spListItem.Attachments) {

 $spFile = $sourceSPList.ParentWeb.GetFile(

 $($spListItem.Attachments.UrlPrefix + $leafName)

);

 $newSPListItem.Attachments.Add($leafName, $spFile.OpenBinary());

 }

 # Update Item

 $newSPListItem.Update();

 }

}

You can use the function by typing the following:

PS > Copy-SPListItem `

>> -source http://nimaintra.net/Lists/Announcements `

>> -destination http://nimaintra.net/Site/Lists/Announcements

248 PowerShel l for Microsoft SharePoint 2010 Administrators

When we run this example, the script copies all the items stored in http://
nimaintra.net/Lists/Announcements to the Announcements list in the subsite Site.

Additional Functionality in SharePoint 2010
SharePoint 2010 offers the capability to update the properties of multiple items at the
same time through the graphical user interface. This became possible in SharePoint
2010 thanks to the introduction of check boxes and the Ribbon, allowing users to
perform actions on more than one item at a time. Users can also use the Datasheet view
when updating multiple list items.

Copying items from one list to another is possible only for documents in document
libraries, and it is possible to copy only one item at a time using the Send To Other
Location feature, as shown in Figure 15-3. This feature enables you to set up a relationship
between the source document and the target document so that the author can get
a notification in case the document is changed. In SharePoint lists based on other
templates—such as calendars, task lists, and custom lists—this option is not available.

Figure 15-3. Copying a document from one document library to another

249Chapter 15: Managing SharePoint L ist Items

Summary
In this chapter, we looked at how to work with list items using Windows PowerShell.
We demonstrated creating, updating, and removing list items in SharePoint 2010.

When managing list items, it is important to try to minimize the performance
impact by optimizing the queries used, since working with large lists could generate
large amount of SQL queries and consume a lot of system resources. A good way to do
that is to use CAML queries together with the GetItems method supported by SPList
objects.

In the last scenario, we presented an example of how to copy list items from a
source list to a destination list using Windows PowerShell, including how to copy list
item attachments.

SharePoint 2010 allows users to update and delete multiple list items through the
graphical user interface. However, in some cases, you will want to look for specific
values in lists or copy entire lists, which can be done programmatically in scripts.

In document libraries, you can send documents to other locations, which creates
a parent-child relationship. This is possible only with document libraries, and not with
other types of lists.

This page intentionally left blank

251

CHAPTER 16 Managing Documents
in Document Libraries

252 PowerShel l for Microsoft SharePoint 2010 Administrators

Whether SharePoint has been available in your company for years or it has
recently been implemented, you might face situations where you need
to handle a large amount of documents. For example, you might need to

migrate file shares or documents stored outside SharePoint into SharePoint document
libraries.

In this chapter, we will look at automating management of documents in document
libraries. First, we will explore how to create new libraries and modify the properties
of existing ones. Next, we will describe how to upload files to a document library, and
then create a PowerShell function that can be used when moving documents, such as
from file shares into SharePoint. We will also look at how to copy documents between
document libraries and create a script that can be used to automate the process.

As mentioned in the previous chapter, SharePoint 2010 now offers the capability
to modify the metadata of multiple files or list items at the same time. In a similar
fashion, it is also possible to execute other actions, such as checking in and checking
out multiple documents. In document libraries where there are mandatory fields,
documents will not become available to end users until the mandatory fields contain
data. This can sometimes be a problem if end users upload documents by opening
the document library in a Windows Explorer window (accessing it by means of the
WebDAV protocol), where they will not be able to fill in the mandatory fields. Here,
we will look at how to manage checked-out documents and also create a function for
checking in and checking out all documents in a document library.

In our last scenario, we will enable the use of content types in a document library.
We will then create a new content type using PowerShell and apply it to our document
library.

Working with Document Libraries
Working with document libraries is similar to working with SharePoint lists, as described
in the preceding chapters. To demonstrate, we’ll create a new document library and then
show how to add items to document libraries.

Creating Document Libraries
Creating a new document library using Windows PowerShell is similar to creating any
other type of list. You can use the same Add method provided by the SPListCollection
class. This example demonstrates how to create a document library using the New-SPList
function described in Chapter 14.

PS > New-SPList -url http://nimaintra.net/Site -name "My Docs" `

>> -description "My Document Library" -template DocumentLibrary

To retrieve a library in SharePoint 2010, use the Get-SPList function, just as when
retrieving lists.

PS > $spDocumentLibrary = Get-SPList -url "http://nimaintra.net/Site/My Docs"

253Chapter 16: Managing Documents in Document Libraries

Document libraries in SharePoint 2010 inherit many properties and methods from
the SPList class, but also include specific properties and methods available only for
document libraries. For instance, to check if a document library is a gallery, such as Site
Templates, List Templates, Web Parts, or Master Pages, use the IsCatalog property of
the SPDocumentLibrary class.

PS > $spDocumentLibrary.IsCatalog

False

Here, the property returned False because the document library is not a gallery.
You can use the IsCatalog property if you are looping through a collection of

document libraries and want to exclude galleries. In the next example, we use the
GetListsOfType method to retrieve a collection of all document libraries in a site, and
then we use the Where-Object cmdlet to pick out only the document libraries where
the IsCatalog property is not equal to True. Finally, we use the ForEach-Object
cmdlet and perform an action on each of the document libraries.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net/Site

PS > $spWeb.GetListsOfType("DocumentLibrary") |

>> Where-Object { $_.IsCatalog -ne $true } |

>> ForEach-Object { Write-Host $_.Title }

There are other useful properties that can be set when creating or updating a document
library, such as versioning settings, which we will discuss in the next chapter.

SharePoint document libraries may have folders to better organize the contents
of the library. These folders can be created using the same AddItem method used
for adding new list items. The difference is that you use another overload definition
of this method, which also accepts a value of type Microsoft.SharePoint
.SPFileSystemObjectType that instructs it whether the new item is a file or a folder.

PS > $spFolder = $spDocumentLibrary.AddItem(

>> "",[Microsoft.SharePoint.SPFileSystemObjectType]::Folder,"My New Folder")

PS > $spFolder.Update()

The ability to create folders can be enabled or disabled from the graphical user
interface. This setting can also be modified by Windows PowerShell through the
EnableFolderCreation property.

PS > $spDocumentLibrary.EnableFolderCreation = $false

PS > $spDocumentLibrary.Update()

NOTE Even if the EnableFolderCreation property is set to False, you can still create
folders using the SharePoint object model, such as with Windows PowerShell.

254 PowerShel l for Microsoft SharePoint 2010 Administrators

To remove a document library, use the Delete method—again, just as with lists.

PS > $spDocumentLibrary.Delete()

Uploading and Managing Files
To upload files to a SharePoint document library, use the Add method provided by the
Microsoft.SharePoint.SPFileCollection class, which represents a collection of
SPFile objects in SharePoint 2010.

Before you can access a file collection in SharePoint 2010, you must create an instance
of the Microsoft.SharePoint.SPFolder class using the GetFolder method provided
by the Microsoft.SharePoint.SPWeb class. This example demonstrates how to use
the GetFolder method on the Shared Documents document library.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net/Site

PS > $spFolder = $spWeb.GetFolder("Shared Documents")

Once you have bound to the document library, you can store the file collection in
a new variable, which you can later use to add files, as follows:

PS > $spFileCollection = $spFolder.Files

The Add method provided by the Microsoft.SharePoint.SPFileCollection
class is used to create a file in a file collection. This is very versatile method that has
21 overload definitions. For the one that we will be using in our example, we need to
specify the file’s relative URL, a byte array containing the file, and a Boolean value that
determines whether an existing file with the same name should be overwritten. Let’s
take a look at the byte array first.

It is possible to expose a sequence of bytes using the System.IO.FileStream
class, which we can pass on to the Add method. A simple way of retrieving an object of
the type System.IO.FileStream is by using the OpenRead method provided by the
System.IO.FileInfo class. When using the Get-ChildItem cmdlet on a file, we get
an object of the type System.IO.FileInfo, as shown here:

PS > $file = Get-ChildItem C:\Documents\MyDoc.docx

PS > $file.GetType().FullName

System.IO.FileInfo

Now we can use the OpenRead method when adding a new file to a SharePoint
library.

PS > $spFile =

>> $spFileCollection.Add("Shared Documents/MyDoc.docx",$file.OpenRead(),$false)

In this example, we store the object returned by the Add method in a variable. This
allows us to add more information, such as metadata, to the file in SharePoint 2010.
We add metadata using an object of the type Microsoft.SharePoint.SPListItem,

255Chapter 16: Managing Documents in Document Libraries

which we retrieve using the Item property. In the next example, we store the object
in a variable and change the value of the list item’s Modified field, and finally use the
Update method to commit the changes to the content database.

PS > $spListItem = $spFile.Item

PS > $spListItem["Modified"] = (Get-Date 8/2/1987)

PS > $spListItem.Update()

The Upload-SPFile function, shown next, wraps up the code described previously
in a reusable function.

function Upload-SPFile([string]$url, [array]$files, [switch]$overwrite) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 $spFolder = $SPList.RootFolder

 $spFileCollection = $spFolder.Files

 # Loop through each file in the array

 foreach($file in $files) {

 $docURL = $spList.RootFolder.Name + "/" + (Split-Path $file -Leaf)

 # Check if file already exists

 if(-not($overwrite) -and $spList.ParentWeb.GetFile($docURL).Exists) {

 Write-Host "File $file already exists"

 Continue

 }

 # Split-Path used to return the file name

 $spFileCollection.Add(

 $docURL,

 $((Get-ChildItem $file).OpenRead()),

 $overwrite

) | Out-Null

 }

}

Run the Upload-SPFile function by typing the following:

PS > Upload-SPFile -url "http://nimaintra.net/Shared Documents" `

>> -files C:\Myfile\MyDoc.docx -overwrite

You can also use the Upload-SPFile function to add multiple files to a library in
SharePoint. In the next example, we use the Get-ChildItem cmdlet and retrieve all
items in a specific directory with the docx or pptx file extension, and send those objects

256 PowerShel l for Microsoft SharePoint 2010 Administrators

through a pipeline to the Select-Object cmdlet, retrieving the items’ full names with
the ExpandProperty parameter.

PS > Get-ChildItem C:\Documents* -Include "*.docx","*.pptx" |

>> Select-Object -ExpandProperty FullName

C:\Documents\Annual Report.docx

C:\Documents\Content guidence.pptx

C:\Documents\Document Policy.docx

C:\Documents\Nima Design Principles.pptx

C:\Documents\Projects.xlsx

The output from this example could be stored in a variable and then used as input
for the Upload-SPFile function, like this:

PS > $arrFiles = Get-ChildItem C:\Documents* -Include "*.docx","*.pptx" |

>> Select-Object -ExpandProperty FullName

PS > Upload-SPFile -url "http://nimaintra.net/Shared Documents" `

>> -files $arrFiles -overwrite

In this example, we add the –overwrite switch parameter, which is used to
overwrite existing files. Note that if a file is checked out, the command will not work.
Later in this chapter, we will demonstrate how to handle checked-out documents using
Windows PowerShell.

Copying Documents Between Document Libraries
To copy files from one document library to another using Windows PowerShell, you can
use the Add method supported by the Microsoft.SharePoint.SPFileCollection
class, just as when uploading a file to a document library.

Let’s start with retrieving the document libraries. In this example, we use the
Get-SPList function described in Chapter 14 to bind to the document libraries and
store the destination file collection in a variable.

PS > $sourceSPList = Get-SPList -url "http://nimaintra.net/Shared Documents"

PS > $destSPList = Get-SPList -url "http://nimaintra.net/Site/Shared Documents"

PS > $spFileCollection = $destSPList.RootFolder.Files

Once we have retrieved the document libraries, we can loop through each file in
the source document library and create it in the destination document library using
a foreach loop.

PS > foreach($item in $sourceSPList.Items) {

In the foreach loop, we start by retrieving the current file using the GetFile
method.

>> $file = $sourceSPList.ParentWeb.GetFile($item.File)

257Chapter 16: Managing Documents in Document Libraries

Then we store the destination file’s relative URL in a variable. In the example, we
replace the root folder name so that the destination file’s URL corresponds with the
destination document library.

>> $targetDocUrl = $file.Url -replace $sourceSPList.RootFolder.Name,

>> $destSPList.RootFolder.Name

Files stored in a document library may be placed in folders and subfolders, so we
need to take this into consideration. A simple way of checking if a folder exists is by
using the GetFolder method and checking the Exists property, as demonstrated here:

>> if(-not($destSPList.ParentWeb.GetFolder($file.ParentFolder.Url).Exists)) {

If the folder doesn’t exist, we iterate through each parent folder using a for loop.
In the next example, we split the folder’s URL, loop through each segment, and create
each folder in the destination document library.

>> $folderURL = $file.Url.Split("/")

>> $addFolder = $folderURL[0]

>> for($i=1;$i -lt ($folderURL.Count -1);$i++) {

>> $addFolder = $addFolder + "/" + $folderURL[$i]

>> $destSPList.ParentWeb.Folders.Add($addFolder) | Out-Null

>> } # end for loop

>> $addFolder = $null

>> } # end if

Next, we check if the file already exists. If it does, we continue with the next object
in the pipeline.

>> if(-not($overwrite) -and $destSPList.ParentWeb

.GetFile($targetDocUrl).Exists) {

>> Write-Host "File $targetDocUrl already exists"

>> Continue

>> } # end if

Finally, we use the Add method to create the file in the destination document library.

>> $spFileCollection.Add($targetDocUrl,$file.OpenBinary(),$false) | Out-Null

>> } # end foreach

The function Copy-SPDocumentLibrary wraps up all the code used in this
example.

function Copy-SPDocumentLibrary(

 [string]$source,

 [string]$destination,

 [switch]$overwrite

258 PowerShel l for Microsoft SharePoint 2010 Administrators

) {

 # Get source list

 $sourceSPList = Get-SPList -url $source

 # Get destination list

 $destSPList = Get-SPList -url $destination

 $spFileCollection = $destSPList.RootFolder.Files

 # Loop through each item and copy to destination list

 foreach($item in $sourceSPList.Items) {

 $file = $sourceSPList.ParentWeb.GetFile($item.File)

 $targetDocUrl = $file.Url -replace $sourceSPList.RootFolder.Name,

 $destSPList.RootFolder.Name

 # Check if folder exists

 if(-not($destSPList.ParentWeb.GetFolder($file.ParentFolder.Url).Exists)) {

 # Check each subfolder

 $folderURL = $file.Url.Split("/")

 $addFolder = $folderURL[0]

 for($i=1;$i -lt ($folderURL.Count -1);$i++) {

 $addFolder = $addFolder + "/" + $folderURL[$i]

 $destSPList.ParentWeb.Folders.Add($addFolder) | Out-Null

 }

 $addFolder = $null

 }

 # Check if target file exists

 if(-not($overwrite) -and `

 $destSPList.ParentWeb.GetFile($targetDocUrl).Exists) {

 Write-Host "File $targetDocUrl already exists"

 Continue

 }

 $spFileCollection.Add(

 $targetDocUrl,

 $file.OpenBinary(),

 $overwrite

) | Out-Null

 }

}

You can use the function by typing the following:

PS > Copy-SPDocumentLibrary -source "http://nimaintra.net/Shared Documents"

>> -destination "http://nimaintra.net/Site/Shared Documents"

This example does not copy files that exist in the destination document library. If you
want to overwrite existing files, use the overwrite switch parameter, as follows:

PS > Copy-SPDocumentLibrary -source "http://nimaintra.net/Shared Documents"

>> -destination "http://nimaintra.net/Site/Shared Documents" -overwrite

259Chapter 16: Managing Documents in Document Libraries

Checking Out Files
Checking out files in a document library using Windows PowerShell is done with the
CheckOut method provided by the Microsoft.SharePoint.SPFile class. We will
start our example by retrieving an existing file using the GetFile method.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $spFile = $spWeb.GetFile("Shared Documents/MyDoc.docx")

Here, we store an instance of the Microsoft.SharePoint.SPFile object in the
spFile variable.

Before checking out a file from a document library, it is a good idea to see if the
file is already checked out. The Microsoft.SharePoint.SPFile class provides the
CheckOutType property, which indicates how a file is checked out.

PS > $spFile.CheckOutType

None

The return value of None tells us that the file is not checked out. The other values
CheckOutType can return are Offline, which indicates that the file is checked out for
editing on the local computer, and Online, which indicates that the file is checked out
for editing on the server.

Next, we store a check-out type in a variable and use it when checking out a file. The
CheckOut method also supports the lastModifiedDate property, which indicates that
the file should not be checked out if it has been modified after a specified date. In this
example, we set the value to a null reference.

PS > $spCheckOutType = >>

[Microsoft.SharePoint.SPFile+SPCheckOutType]::Online

PS > $spFile.CheckOut($spCheckOutType,$null)

The Microsoft.SharePoint.SPFile class provides additional properties that
you can use to gather information regarding the file. In the following example, we use
the Format-List cmdlet to display some of the check-out properties supported.

PS > $spFile | Format-List -Property CheckOutType, CheckedOutDate, CheckedOutBy

CheckOutType : Online

CheckedOutDate : 6/1/2010 1:08:52 PM

CheckedOutBy : SHAREPOINT\system

The following script, Invoke-SPFileCheckout.ps1, checks out one or multiple files in
a SharePoint document library.

<#

.SYNOPSIS

Checks out files in a SharePoint document library.

260 PowerShel l for Microsoft SharePoint 2010 Administrators

.DESCRIPTION

The script checks out a single file or loops

through a document library and checks out all files.

.PARAMETER url

Site URL.

.PARAMETER folder

Folder/Document library name

.PARAMETER file

File name

.PARAMETER checkOutType

Checkout type Online or Offline

.PARAMETER all

Checks out all files.

#>

param(

 [string]$url,

 [string]$folder,

 [string]$file,

 [string]$checkOutType,

 [switch]$all

)

Check if Snap-in is loaded

if(-not(

 Get-PSSnapin | Where { $_.Name -eq "Microsoft.SharePoint.PowerShell"})

) {

 Add-PSSnapin Microsoft.SharePoint.PowerShell;

}

$spWeb = Get-SPWeb -Identity $url;

Check if All files should be checked out

if($all) {

 # Get the folder

 $spFolder = $spWeb.GetFolder($folder);

 # Store file collection in a variable

 $spFileCollection = $spFolder.Files;

261Chapter 16: Managing Documents in Document Libraries

 # Loop through files and check out if

 # file is not already checked out

 $spFileCollection | ForEach-Object {

 # Check if file is not checked out

 if($_.CheckOutType -eq "None") {

 # check out file

 $_.CheckOut($checkOutType,$null);

 Write-Host $_.Name checked out;

 } else {

 Write-Host $_.Name already checked out;

 }

 }

} else {

 # Store file path in a variable

 $fileURL = $folder + "/" + $file;

 $spFile = $spWeb.GetFile($fileURL);

 # Check if file is not checked out

 if($spFile.CheckOutType -eq "None") {

 # Check out file

 $spFile.CheckOut($checkOutType,$null);

 Write-Host $spFile.Name checked out;

 } else {

 Write-Host $spFile.Name already checked out;

 }

}

$spWeb.Dispose()

To check out a single file in a document library, run the script as follows:

PS > .\Invoke-SPFileCheckout.ps1 -url http://nimaintra.net `

>> -folder "Shared Documents" -file MyDoc.docx -checkOutType Online

To check out all files in a document library, use the -all switch parameter.

PS > .\Invoke-SPFileCheckout.ps1 -url http://nimaintra.net `

>> -folder "Shared Documents" -checkOutType Online -all

Checking In Files
To check in files in a document library, use the CheckIn method provided by the
Microsoft.SharePoint.SPFile class. The CheckIn method supports the Comment
parameter, which you can use to add a comment to the newly created version of the

262 PowerShel l for Microsoft SharePoint 2010 Administrators

document. You can also specify the type of check-in for a file using the Microsoft
.SharePoint.SPCheckinType enumeration, which contains the following members:

MinorCheckIn represents a minor version.

MajorCheckIn represents a major version.

OverwriteCheckIn causes the method to overwrite the current minor version.

In this example, we specify a comment and check in a file as a minor version.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $spFile = $spWeb.GetFile("Shared Documents/MyDoc.docx")

PS > $spFile.CheckIn("Checked in using PowerShell",

>> [Microsoft.SharePoint.SPCheckinType]::MinorCheckIn)

If the currently checked-out file is a major version and you try to overwrite the
existing file when checking in, an error occurs. A simple and effective way of handling
terminating errors, such as the one that occurs when trying to overwrite a major
version of a file when checking in, is to use the Try, Catch, and Finally blocks
supported by Windows PowerShell.

PS > Try {

>> $spCheckinType = [Microsoft.SharePoint.SPCheckinType]::OverwriteCheckIn

>> $spFile.CheckIn("Checked in using PowerShell",$spCheckinType)

>> } Catch {

>> "You cannot overwrite a major version file"

>> $check = $true

>> } Finally {

>> if($check -eq $true) {

>> "Error occured"

>> } else {

>> "Success"

>> }

>> $check = $null

>> }

We start with a Try block containing the code we want to test. If the CheckIn
method returns an error, the Catch block will handle the error and output “You cannot
overwrite a major version file” before setting the variable check to True. The Finally
block runs every time, even if the Try block runs without any errors, so we include
an if statement and check the check variable used in the Catch block. If an error has
occurred, the check variable contains a value of True, and “Error occurred” will be
written to the output; otherwise “Success” will be reported. Before closing the Finally
block, we set the check variable to null.

263Chapter 16: Managing Documents in Document Libraries

NOTE The Try, Catch, and Finally blocks must run on the same thread. The code used in
the previous example will return an error if it is run interactively in a standard Windows PowerShell
console and the ThreadOption is not set to ReuseThread. However, in the SharePoint 2010
Management shell, each line runs on the same thread, so the code works fine. It is also possible
to write the code on the same line. Functions and scripts run on the same thread, so the Try,
Catch, and Finally blocks can be written on separate lines when writing scripts or functions
including them.

The following Invoke-SPFileCheckin.ps1 script automates the procedure of
checking in files in a document library.

<#

.SYNOPSIS

Checks in files in a SharePoint document library.

.DESCRIPTION

The script checks in a single file or loops

through a document library and checks in all files.

.PARAMETER url

Site URL.

.PARAMETER folder

Folder/Document library name

.PARAMETER file

File name

.PARAMETER comment

Version comment

.PARAMETER checkinType

Checkin type, can be: Major,

Minor or Overwrite

.PARAMETER all

Checks out all files.

#>

param(

 [string]$url,

 [string]$folder,

 [string]$file,

 [string]$comment,

 [string]$checkinType,

 [switch]$all

)

264 PowerShel l for Microsoft SharePoint 2010 Administrators

Check if Snap-in is loaded

if(-not(

 Get-PSSnapin | Where { $_.Name -eq "Microsoft.SharePoint.PowerShell"})

) {

 Add-PSSnapin Microsoft.SharePoint.PowerShell;

}

Use a switch to get checkin type,

defaults to minor version if value not within range.

switch($checkinType) {

 {$_ -match "^major" } {

 $spCheckinType = [Microsoft.SharePoint.SPCheckinType]::MajorCheckIn;

 }

 {$_ -match "^minor" } {

 $spCheckinType = [Microsoft.SharePoint.SPCheckinType]::MinorCheckIn;

 }

 {$_ -match "^overwrite" } {

 $spCheckinType = [Microsoft.SharePoint.SPCheckinType]::OverwriteCheckIn;

 }

 Default {

 $spCheckinType = [Microsoft.SharePoint.SPCheckinType]::MinorCheckIn;

 }

}

$spWeb = Get-SPWeb $url

Check if All files should be checked out

if ($all) {

 # Get the folder

 $spFolder = $spWeb.GetFolder($folder);

 # Store file collection in a variable

 $spFileCollection = $spFolder.Files;

 # Loop through files and check out if

 # file is not already checked out

 $spFileCollection | ForEach-Object {

 # Check if file is not checked in

 if ($_.CheckOutType -ne "None") {

 Try {

 $_.CheckIn($comment,$spCheckinType);

 } Catch {

265Chapter 16: Managing Documents in Document Libraries

 "You cannot overwrite a major version file";

 $check = $true;

 } Finally {

 if ($check -eq $true) {

 Write-Host $_.Name Not Checked in;

 } else {

 Write-Host $_.Name checked in;

 }

 $check = $null;

 }

 } else {

 Write-Host $_.Name already checked in;

 }

 }

} else {

 # Store file URL in a variable

 $fileURL = $folder + "/" + $file;

 $spFile = $spWeb.GetFile($fileURL);

 # Check if file is not checked in

 if ($spFile.CheckOutType -ne "None") {

 Try {

 $spFile.CheckIn($comment,$spCheckinType);

 } Catch {

 "You cannot overwrite a major version file";

 $check = $true;

 } Finally {

 if ($check -eq $true) {

 Write-Host $spFile.Name Not Checked in;

 } else {

 Write-Host $spFile.Name checked in;

 }

 $check = $null;

 }

 } else {

 Write-Host $spFile.Name already checked in;

 }

}

$spWeb.Dispose()

To use the Invoke-SPFileCheckin.ps1 script to check in a single file, type the
following:

PS > .\Invoke-SPFileCheckin.ps1 -url http://nimaintra.net `

>> -folder "Shared Documents" -file MyDoc.docx -checkinType minor

266 PowerShel l for Microsoft SharePoint 2010 Administrators

To check in all the files in a document library, use the -all switch.

PS > .\Invoke-SPFileCheckin.ps1 -url http://nimaintra.net `

>> -folder "Shared Documents" -checkinType minor -all

Managing Content Types
A content type is a reusable object in SharePoint that allows you to centrally define
different types of content with, for instance, metadata and workflows. For example,
you might use a content type to ensure that all Microsoft PowerPoint presentations
always use the same template and metadata. By creating a content type and making
it available in all document libraries, end users will be able to click the New button in
the document library and find the template. Also, the mandatory metadata needs to be
filled in before the document can be saved.

Content types can easily be created using Windows PowerShell and the
SPContentType class. SharePoint comes with a number of content types. Your new
content types need to derive from any of the root content types or from any other
content type you create. You also need to specify which content type collection it
should be added to and its name.

In the next example, we use the New-Object cmdlet to create an instance of the
Microsoft.SharePoint.SPContentType class and store it in a variable. The New-
Object cmdlet supports the -ArgumentList parameter, which we use to pass a list of
arguments to the constructor of the Microsoft.SharePoint.SPContentType class.

PS > $spWeb = Get-SPWeb -Identity http://nimaintra.net

PS > $contentType = New-Object Microsoft.SharePoint.SPContentType -ArgumentList `

>> @($spWeb.ContentTypes["Document"],

>> $spWeb.ContentTypes, "Company Presentation")

You can set a number of properties on a content type, including the document
template to be used and the set of fields that should be associated with the content
type. In this example, we specify a group that a content type should belong to by
using the Group property. When we have set the group name, we use the Add method
provided by the Microsoft.SharePoint.ContentTypeCollection class. If the
group does not exist, SharePoint will create it when adding the new content type.

PS > $contentType.Group = "Nima Document Content types"

PS > $spContentTypeCollection = $spWeb.ContentTypes

PS > $spContentTypeCollection.Add($contentType)

The content type collection contains all the content types available on a site. To get
a list of the content types available, we can pipe the collection to the Select-Object
cmdlet and retrieve the Name property. The list now includes the Company Presentation
content type we created in the previous example.

PS > $spContentTypeCollection | Select-Object -Property Name

267Chapter 16: Managing Documents in Document Libraries

Now our new content type is available to all sites within the site collection, but in our
scenario, we also want to associate the content type with a specific SharePoint document
library. In this case, we need to use the Microsoft.SharePoint.SPList object. In the
following example, we get the Company Presentation content type by using the Where-
Object cmdlet and filtering on the content type’s name. Then we use the returned
content type as input to the Add method of the relevant SPDocumentLibrary object.

PS > $contentType = $spContentTypeCollection |

>> Where-Object {$_.Name -eq "Company Presentation"}

PS > $spDocumentLibrary =

>> Get-SPList -url "http://nimaintra.net/Shared Documents"

PS > $spDocumentLibrary.ContentTypes.Add($contentType)

The following Add-SPContentTypeToList function can be used to add existing
content types to a specific list.

function Add-SPContentTypeToList ([string]$url, [string]$contentType) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 $spWeb = $spList.ParentWeb

 # Get the content type

 $spContentType = $spWeb.ContentTypes |

 Where-Object { $_.Name -eq $contentType }

 # Check if the content type exists

 if (-not([string]::IsNullOrEmpty($spContentType))) {

 # Store the list content types in a collection

 $spContentTypeCollection = $spList.ContentTypes;

 # If content type does not exist in list, add it

 if (-not($spContentTypeCollection | Where { $_.Name -eq $contentType })) {

 $spList.ContentTypes.Add($spContentType);

 } else {

 Write-Host "The content type specified already exists";

 }

 } else {

 Write-Host "The content type specified does not exist";

 }

 $spWeb.Dispose()

}

You can use the function to add a new content type to a document library by typing
the following:

PS > Add-SPContentTypeToList -url "http://nimaintra.net/Shared Documents" `

>> -contentType "Company Presentation"

268 PowerShel l for Microsoft SharePoint 2010 Administrators

Additional Functionality in SharePoint 2010
If a document library contains documents that do not have a checked-in version due to
the absence of metadata in the mandatory fields, users with sufficient permissions can
take ownership and check in the documents so that they become available to all users.
Figure 16-1 shows the Settings page for taking ownership of the checked-out files.

Content types can be managed by users with sufficient permissions through the
Site Content Types gallery, as shown in Figure 16-2. In SharePoint 2010, you can reuse
content types between site collections and Web applications as long as they share
the same managed metadata service application. This is done by designating a site
collection to be the content type hub in the connection properties of the managed
metadata service application. The publishing of each content type in the content type
hub can then be managed separately. By means of timer jobs, the content types are
published on regular basis to the consuming Web applications and site collections.

Figure 16-1. Managing files that have no checked-in version

269Chapter 16: Managing Documents in Document Libraries

Summary
In this chapter, we looked at how to manage document libraries and their contents
using Windows PowerShell. Manipulating document libraries works in much the same
way as manipulating SharePoint lists, and in the first scenario we demonstrated this
by showing how to connect to and change the properties of a document library. In
the next scenario, we looked at how it is possible to upload documents to a document
library using the AddItem method, and we created a function that could be used when
creating scripts to migrate files from something like a file share into SharePoint.

Next, we created two functions that handle the checking in and checking out
of documents to demonstrate how to manage changes to multiple documents. We
also looked at the Try, Catch, and Finally blocks, which are useful for handling
termination errors.

Finally, we covered how to create content types using Windows PowerShell.

Figure 16-2. The gallery of site content types

This page intentionally left blank

271

CHAPTER 17 Managing Versioning

272 PowerShel l for Microsoft SharePoint 2010 Administrators

SharePoint 2010 offers a lot of features for enterprise document management. One
commonly used feature is versioning, where you have the option to store both
major and minor versions of files and list items. Content approval gives you

the opportunity to hide minor versions from end users, leaving only published major
versions visible.

One downside to versioning is that each version is stored as a full copy of the
document or list item in the content database. Suppose that an end user has a 10MB
PowerPoint presentation and has saved it ten times, generating ten versions. That will
use 100MB of space in the content database. If the document library also allows minor
versions, an additional copy will be added for each minor version, which can result in
insufficient disk space on the back-end SQL Server.

In this chapter, we will demonstrate how to use Windows PowerShell to set the
content approval, version history, draft item security, and check-out settings on lists
and document libraries in SharePoint 2010.

Content Approval
Content approval makes it possible to have versions of list items or files in a pending
state until the item or file is approved. While the item or file is waiting for approval, it
will not be available to end users who do not have sufficient permissions.

Both the SPList and SPDocumentLibrary classes support the EnableModeration
property. Setting this property to True enables content approval for a list or document
library.

PS > $spDocumentLibrary =

>> Get-SPList -url "http://nimaintra.net/site/Shared Documents"

PS > $spDocumentLibrary.EnableModeration = $true

PS > $spDocumentLibrary.Update()

The following function, Set-SPContentApproval, enables or disables content
approval for a list or a document library.

function Set-SPContentApproval (

 [string]$url,

 [switch]$enable,

 [switch]$disable

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 if ($enable) {

 # Enable content approval

273Chapter 17: Managing Versioning

 $spList.EnableModeration = $true;

 }

 if ($disable) {

 # Disable content approval

 $spList.EnableModeration = $false;

 }

 $spList.Update();

}

To use the function to enable content approval for a list or document library, type
the following:

PS > Set-SPContentApproval -url "http://nimaintra.net/Shared Documents" `

>> -enable

To disable content approval, use the –disable parameter.

PS > Set-SPContentApproval -url "http://nimaintra.net/Shared Documents" `

>> -disable

Version History
By default, version history is not enabled in any new lists or document libraries. When
enabling version history in a list, you have the option to create a version each time an
item in the list is edited. Document libraries also support major and minor versions,
such as 1.0, 1.1, and so on.

The SPList and the SPDocumentLibrary classes include the EnableVersioning
property. The following example demonstrates how to enable version history in a list in
SharePoint 2010.

PS > $spList = Get-SPList -url "http://nimaintra.net/site/Lists/My Custom List"

PS > $spList.EnableVersioning = $true

PS > $spList.Update()

The SPDocumentLibrary class also provides the EnableMinorVersions property,
which you can use as follows:

PS > $spDocumentLibrary =

>> Get-SPList -url "http://nimaintra.net/site/Shared Documents"

PS > $spDocumentLibrary.EnableVersioning = $true

PS > $spDocumentLibrary.EnableMinorVersions = $true

PS > $spDocumentLibrary.Update()

You can also specify the number of versions to retain using the MajorVersionLimit
property, and the number of major (published and/or approved) versions for which

274 PowerShel l for Microsoft SharePoint 2010 Administrators

drafts should be kept using the MajorWithMinorVersionsLimit property supported
by both lists and document libraries. The next example shows how to set the number of
major versions to retain and the number of versions for which drafts should be kept in a
document library.

PS > $spDocumentLibrary.MajorVersionLimit = 10

PS > $spDocumentLibrary.MajorWithMinorVersionsLimit = 5

PS > $spDocumentLibrary.Update()

NOTE When setting the MajorWithMinorVersionsLimit property on an SPList,
content approval must be enabled.

The following Set-SPVersionHistory function supports both lists and
documents.

function Set-SPVersionHistory (

 [string]$url,

 [switch]$enable,

 [switch]$enableMinor,

 [switch]$disable,

 [int]$version=0,

 [int]$draft=0

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 if ($enable -or $enableMinor) {

 # Enable Versioning

 $spList.EnableVersioning = $true;

 if($enableMinor -and `

 $spList -is [Microsoft.SharePoint.SPDocumentLibrary]) {

 # Enable Major and Minor Version

 $spList.EnableMinorVersions = $true;

 }

 # Set number of versions to keep

 $spList.MajorVersionLimit = $version;

 # Set the number of versions for which drafts should be kept

 if ($spList.EnableModeration -eq $true) {

 $spList.MajorWithMinorVersionsLimit = $draft

 } else {

 Write-Host Enable Content Approval for the list: $splist

 }

275Chapter 17: Managing Versioning

 }

 if ($disable) {

 # Disable Versioning

 $spList.EnableVersioning = $false

 if($spList -is [Microsoft.SharePoint.SPDocumentLibrary]) {

 # Disable versioning on document library

 $spList.EnableMinorVersions = $false;

 }

 }

 $spList.Update()

}

You can use the function to enable version history on a list by typing the following:

PS > Set-SPVersionHistory -url "http://nimaintra.net/Site/Lists/My Custom List" `

>> -enable -version 10 -draft 5

In this example, we enable versioning in the list My Custom List. We also set the
maximum number of major versions to 10. On those for which draft versions will be
retained, we set the maximum to 5.

If you want to enable versioning in a document library, use an URL to a document
library as input to the url parameter.

PS > Set-SPVersionHistory -url "http://nimaintra.net/site/Shared Documents `

>> -enableMinor -version 10 -draft 5

In this example, we use the enableMinor switch parameter to enable major and
minor versions. We also specify that we want to retain 10 major versions, the latest 5
out of which will also retain draft history.

Draft Item Security
With draft item security, we can limit the ability of users to see draft items in a list or
document library. With SharePoint 2010 lists, content approval must be enabled for
draft item security to be used. With document libraries, you can grant the right to
view drafts to users who can read or edit documents, but granting it to those who can
approve obviously requires that content approval be enabled.

You can set the draft item security using the DraftVersionVisibility property,
which accepts the following values:

Approver Only the author of the item/document and users with the
Approve permissions are able to see the items/documents.

Author Only the author of the item/document or users with the Edit items
permissions can view the items/documents.

Reader Any user who has access to read the item/document can see the
item/document.

276 PowerShel l for Microsoft SharePoint 2010 Administrators

The following is an example of how to set the draft version security to allow only
users who can approve items to see the draft items in a document library.

PS > $spDocumentLibrary =

>> Get-SPList -url "http://nimaintra.net/site/Shared Documents"

PS > $spDocumentLibrary.DraftVersionVisibility = "Approver"

PS > $spDocumentLibrary.Update()

The following Set-SPDraftItemSecurity function sets draft item security in a
list or document library in SharePoint 2010.

function Set-SPDraftItemSecurity(

 [string]$url,

 [switch]$reader,

 [switch]$author,

 [switch]$approver

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 # Check if Content Approval is enabled

 if ($spList.EnableModeration -eq $true) {

 if ($reader) {

 # Any user who can read items

 $spList.DraftVersionVisibility = "Reader";

 }

 if ($author) {

 # Only the author and users who can edit items

 $spList.DraftVersionVisibility = "Author";

 }

 if ($approver) {

 # Only the author and users who can approve items

 $spList.DraftVersionVisibility = "Approver";

 }

 # Update list settings

 $spList.Update();

 } else {

 Write-Host Enable Content Approval for the list: $spList

 }

}

You can use the function’s three switch parameters— –reader, –author, and
–approver—to specify the desired draft version security level. The following example
allows users who can edit items to see the draft items in a document library.

PS > Set-SPDraftItemSecurity -url "http://nimaintra.net/site/Shared Documents" `

>> -author

277Chapter 17: Managing Versioning

Require Check Out
The Require Check Out setting determines whether users must check out a document
in a document library before making any changes to it. This setting applies only to
document libraries.

You can enable or disable the Require Check Out setting using the ForceCheckout
property of a document library object.

PS > $spDocumentLibrary =

>> Get-SPList -url "http://nimaintra.net/site/Shared Documents"

PS > $spDocumentLibrary.ForceCheckout = $true

PS > $spDocumentLibrary.Update()

The following Set-SPRequireCheckOut function automates the steps required to
configure the Require Check Out setting in a document library in SharePoint 2010.

function Set-SPRequireCheckOut(

 [string]$url,

 [switch]$enable,

 [switch]$disable

) {

 # Use the Get-SPList function to retrieve a list

 $spList = Get-SPList -url $url

 if($spList -is [Microsoft.SharePoint.SPDocumentLibrary]) {

 if ($enable) {

 # Enable check out requirement

 $spList.ForceCheckout = $true;

 }

 if ($disable) {

 # Disable check out requirement

 $spList.ForceCheckout = $false;

 }

 # Update document library

 $spList.Update();

 }

}

The next example shows how to use the Set-SPRequireCheckOut function
to force the users to check out documents before making any changes to them in
a document library.

PS > Set-SPRequireCheckOut -url "http://nimaintra.net/site/Shared Documents" `

>> -enable

278 PowerShel l for Microsoft SharePoint 2010 Administrators

You can also use this function to disable the Require Check Out setting.

PS > Set-SPRequireCheckOut -url "http://nimaintra.net/site/Shared Documents" `

>> -disable

Additional Functionality in SharePoint 2010
It is possible to manage the versioning settings from the graphical user interface, as
shown in Figure 17-1. End users with sufficient permissions in a SharePoint list can
limit the number of versions to store. When content approval is enabled, there is an
option to have minor versions that could be configured to be visible only to users with
sufficient permissions.

The versioning settings are set on each individual SharePoint list. There is no option
in the browser-based user interface to apply versioning settings to all lists or document
libraries within a site or the entire Web application.

Figure 17-1. Versioning settings for a SharePoint 2010 document library

279Chapter 17: Managing Versioning

Summary
In this chapter, we created several functions to help solve a very common problem in
SharePoint environments—an unmanageably large number of list item versions. This
included changing the different versioning-related properties that can be applied to
lists and libraries.

We also looked at how to configure draft version security using Windows
PowerShell. Finally, we demonstrated how to enable and disable the Require Check
Out feature on document libraries.

This page intentionally left blank

281

CHAPTER 18 Managing Service
Applications

282 PowerShel l for Microsoft SharePoint 2010 Administrators

In Chapter 9, we made a scripted installation of SharePoint 2010 that left us with a
“clean” farm, without any Web applications or service applications. In this chapter,
we will look at how to create and manage service applications so that their creation

can be included in a scripted installation.
In our first scenario, we will create a new managed metadata service application

and assign it to the application proxy group Workspaces, which we created in
Chapter 10 when we added a new Web application to the farm. We will then look at
how to configure an existing service application by adding new service application
administrators and changing some of its settings.

Next, we will demonstrate the steps necessary to publish a service application
so that the service application data—in this case, the managed metadata—becomes
available to another farm. This is very useful in situations where you have different
farms for Extranet, Intranet, and Internet access, but want to share, for instance, the
same taxonomy structure throughout the whole SharePoint environment.

Working with Service Applications
Windows PowerShell provides many cmdlets for managing service applications. To
demonstrate their use, we’ll create a service application and then configure some of its
properties.

Creating Service Applications
As an example, we will create a managed metadata service application using Windows
PowerShell. First, we need to make sure that the service instance corresponding to the
managed metadata service application is online.

A service instance is the heart of a service application. It is a logical entity that
contains information about the service binaries and other components—such as timer
jobs and related services—that are required for the service application to function. You
can view the service instances available in a farm using the Get-SPServiceInstance
cmdlet. If you want to see a specific service instance, you can pipe the objects returned
from the Get-SPServiceInstance cmdlet to the Where-Object cmdlet and filter on
a specific property. In this example, we display the managed metadata Web service:

PS > Get-SPServiceInstance |

>> Where-Object {$_.TypeName -eq "Managed Metadata Web Service"} |

>> Format-Table -Property TypeName, Status -AutoSize

TypeName Status

-------- ------

Managed Metadata Web Service Disabled

283Chapter 18: Managing Service Appl ications

This example displays the TypeName and Status properties using the Format-Table
cmdlet. The status can be either Online or Disabled. If the status appears as Disabled,
you can start a service instance using the Start-SPServiceInstance cmdlet. Here, we
start the managed metadata Web service instance:

PS > Get-SPServiceInstance |

>> Where-Object {$_.TypeName -eq "Managed Metadata Web Service"} |

>> Start-SPServiceInstance

Some service applications are completely internal to SharePoint 2010, but most
expose some of their functionality to developers or other system components as a WCF
Web service. These applications run in the context of associated IIS application pools.
Application pools are used to consolidate IIS virtual servers or directories that share the
same configuration. This means that multiple service applications can share the same
application pool. Here’s how to discover which application pools the various service
applications run within:

PS > Get-SPServiceApplication |

>> Select-Object -Property Name,

>> @{Name="AppPool"; Expression={

>> if ($_.ApplicationPool) {$_.ApplicationPool.Name} else {"N/A"}}

>> }

When creating a new service application, you can use an existing application pool
or create a new one. You can display the available application pools used for service
applications using the Get-SPServiceApplicationPool cmdlet.

To create a new application pool for a service application, use the New-
SPServiceApplicationPool cmdlet. The cmdlet requires two input parameters: the
new application pool’s name and a managed account that will be used as the identity
for the application pool process. The following example demonstrates how to create a
new application pool.

PS > New-SPServiceApplicationPool -Name "Metadata AppPool" `

>> -account (Get-SPManagedAccount "powershell\managedaccount")

SharePoint 2010 includes a number of cmdlets to create new service applications of
a specific type. You can find out the names of these cmdlets by typing the following:

PS > Get-Command -Verb New -Noun *ServiceApplication |

>> Select-Object -Property Name

Since we are creating a managed metadata service application, we will use the
New-SPMetadataServiceApplication cmdlet.

PS > New-SPMetadataServiceApplication -Name "MetadataServiceApp" `

>> -ApplicationPool (Get-SPServiceApplicationPool "Metadata AppPool") `

>> -DatabaseName "MetaDataDB01"

284 PowerShel l for Microsoft SharePoint 2010 Administrators

NOTE Depending on the type of service application you are creating, other parameters might be
required. Use the Get-Help cmdlet to find out which parameters a specific cmdlet expects.

A service application also requires a service application proxy. A service application
proxy is a logical object used to associate a Web application instance with a service
application instance. Without a service application proxy, a Web application will not
be able to communicate with a service application. To create a new service application
proxy for our metadata service application, we use the New-
SPMetadataServiceApplicationProxy cmdlet.

PS > New-SPMetaDataServiceApplicationProxy -Name "Metadata Service App Proxy" `

>> -ServiceApplication (Get-SPServiceApplication -Name "MetadataServiceApp")

Service application proxies are not connected to Web applications directly, but
rather through an application proxy group. When a new farm is provisioned, a default
service application proxy group is created, and all new Web applications are associated
with this group by default. You can assign the service application proxy to the default
group by adding the –DefaultProxyGroup switch parameter to the New-
SPMetaDataServiceApplicationProxy cmdlet. Alternatively, you can assign
it to a specific proxy group later, as demonstrated here:

PS > Add-SPServiceApplicationProxyGroupMember -Identity "Workspaces" `

>> -Member (Get-SPServiceApplicationProxy |

>> Where-Object { $_.DisplayName -eq "Metadata Service App Proxy" })

Figure 18-1 shows how the configuring of service application associations looks in
Central Administration.

Managing Service Applications
Service application settings can be changed using the Set-ServiceApplication
cmdlet. You can set properties such as the associated application pool and application
proxy group. SharePoint 2010 also includes cmdlets that manage specific service
applications. Here, we’ll use the Set-SPMetadataServiceApplication cmdlet to
configure properties of our managed metadata service application.

Members of the Farm Administrators group have the rights to manage all service
applications in a farm, but you can also grant additional users rights to manage a
specific service application in SharePoint 2010. The users will be given limited access to
the Central Administration site and will be able to manage settings related only to the
specific service application. In the next example, we use the –AdministratorAccount
parameter supported by the Set-SPMetadataServiceApplication cmdlet to grant
the user powershell\sezel rights to manage our metadata service application.

PS > Get-SPServiceApplication -Name "MetadataServiceApp" |

>> Set-SPMetadataServiceApplication -AdministratorAccount powershell\sezel

285Chapter 18: Managing Service Appl ications

This example replaces the current permissions on the service application with the
single value of powershell\sezel. If you want to add a new permission and keep the
old permissions, you can use the Add-SPMetadataSAPermission function, as follows:

function Add-SPMetadataSAPermission(

 [string]$serviceApplication,

 [string]$administratorAccount,

 [string]$fullAccessAccount,

 [string]$restrictedAccount

) {

 # Retrieve metadata service application

 $sa = Get-SPMetadataServiceApplication -Identity $serviceApplication

 # Store current access rules in variable

 $admins = $sa.GetAdministrationAccessControl().AccessRules

 $access = $sa.GetAccessControl().AccessRules

Figure 18-1. Configuring service application associations in Central Administration

286 PowerShel l for Microsoft SharePoint 2010 Administrators

 # Set new access rules

 $sa | Set-SPMetadataServiceApplication `

 -AdministratorAccount $administratorAccount `

 -FullAccessAccount $fullAccessAccount `

 -RestrictedAccount $restrictedAccount

 # Store access control in variable

 $adminAccessControl = $sa.GetAdministrationAccessControl()

 $accessControl = $sa.GetAccessControl()

 # Add old access rules

 $admins | ForEach-Object { $adminAccessControl.AddAccessRule($_) }

 $access | ForEach-Object { $accessControl.AddAccessRule($_) }

 # Set access control

 $sa.SetAdministrationAccessControl($adminAccessControl)

 $sa.SetAccessControl($accessControl)

}

The function stores the service application’s current permissions in a variable, and
then it uses the Set-SPMetadataServiceApplication cmdlet to apply the new
permissions. Finally, the function adds the service application’s previous permissions.

You can use the function by typing the following:

PS > Add-SPMetadataSAPermission -serviceApplication MetadataServiceApp `

>> -administratorAccount "powershell\nigo"

The Set-SPMetadataServiceApplication cmdlet also allows you to designate
a site collection that should act as the content type hub. A content type hub is a new
feature in SharePoint 2010. It is a central location where you can manage and publish
content types. Subscribing to a content type hub allows Web applications to retrieve
published or updated content types from a central location. This means that you
can easily reuse content types between Web applications or even between farms.
The following example demonstrates how to specify the content type hub URL for a
managed metadata service application.

PS > Get-SPServiceApplication -Name "MetadataServiceApp" |

>> Set-SPMetadataServiceApplication -HubUri "http://nimaintra.net"

Configuring a service application to use a content type hub also requires that you
modify the corresponding service application proxy. In the next example, we configure
the managed metadata service application proxy so that it automatically consumes
content types from a content type hub.

PS > Get-SPServiceApplicationProxy |

>> Where { $_.DisplayName -eq "Metadata Service App Proxy" } |

>> Set-SPMetadataServiceApplicationProxy -ContentTypeSyndicationEnabled

287Chapter 18: Managing Service Appl ications

Removing Service Applications
To remove a service application from SharePoint 2010, you can use the Remove-
SPServiceApplication cmdlet. The cmdlet supports the –RemoveData switch
parameter, which is used to delete the databases and other data associated with the
service application. We remove our metadata service application as follows:

PS > Remove-SPServiceApplication `

>> -Identity (Get-SPServiceApplication -Name "MetadataServiceApp") -removedata

This command does not remove the application pool used by the service
application proxy. You can remove the application pool by using the Remove-
SPServiceApplicationPool cmdlet. Next, we remove our metadata service
application pool.

PS > Remove-SPServiceApplicationPool -Identity "Metadata AppPool"

Finally, we remove our metadata service application proxy using the Remove-
SPServiceApplicationProxy cmdlet.

PS > Get-SPServiceApplicationProxy |

>> Where-Object { $_.DisplayName -eq "Metadata Service App Proxy" } |

>> Remove-SPServiceApplicationProxy -RemoveData

Sharing Service Applications Between Farms
The new service application architecture in SharePoint 2010 enables you to share service
applications between farms, thus optimizing your resources by providing enterprise-
wide services. The types of service applications that can be published are business data
connectivity, managed metadata, user profile, search, secure store, and web analytics.

A couple of actions need to be performed in preparation for publishing service
applications between farms. First, you need to determine which farm should act as
the publishing farm and which farm or farms will consume data from the published
service application on the publishing farm. Next, you need to establish a trust between
the publishing farm and the consumer farm. This requires two steps:

 Exchange root certificates between the farms.

 Copy a Security Token Service (STS) certificate from the consuming farm to the
publishing farm.

Exchanging Root Certificates
Exchanging root certificates between the publishing farm and the consuming farm
enables both farms to trust each other for secure communication (over https). This
requires that you export and import the root certificates on the two farms.

288 PowerShel l for Microsoft SharePoint 2010 Administrators

To export a root certificate from a farm, you can use the Get-
SPCertificateAuthority cmdlet. The cmdlet returns an instance of the Microsoft
.SharePoint.Administration.SPCertificateAuthority class. This class
provides the RootCertificate property, which returns an object of type System
.Security.Cryptography.X509Certificates.x509Certificate2. The
x509Certificate2 object represents an X.509 certificate. Objects of the type
x509Certificate2 support the Export method. This method has a contentType
parameter, which accepts an X509ContentType value that describes how the output
should be formatted. The supported values are Cert, SerializedCert, and Pkcs12.
Passing any other value from the X509ContentType enumeration causes an exception.

The Export method returns an array of bytes that represent the certificate. Since we
want to copy the root certificate to a different farm, we write the output to a file using
the Set-Content cmdlet. This cmdlet supports the –Encoding parameter, which has
the default value of Unicode. Since the Export method returns an array of bytes, we
change the encoding to Byte, as follows:

PS > (Get-SPCertificateAuthority).RootCertificate.Export("Cert") |

>> Set-Content -Path "\\SPServer01\Share\PublishingRootCert.cer" `

>> -Encoding Byte

Next, we run the command on the consuming farm.

PS > (Get-SPCertificateAuthority).RootCertificate.Export("Cert") |

>> Set-Content -Path "\\SPServer01\Share\ConsumingRootCert.cer" `

>> -Encoding Byte

After the root certificates have been exported, you need to create a trusted root
authority on both farms using the New-SPTrustedRootAuthority cmdlet. This cmdlet
supports the Name and Certificate parameters. The Name parameter accepts an object
of type System.String and is used to specify the name of the trusted root authority to
create. The Certificate parameter accepts an object of type X509Certificate2, which
can be obtained from the previously saved copy using the Get-PfxCertificate cmdlet.
This example demonstrates how to add a trusted root authority to the publishing farm:

PS > $rootCert =

>> Get-PfxCertificate -FilePath "\\SPServer01\Share\ConsumingRootCert.cer"

PS > New-SPTrustedRootAuthority -Name "Consumer Farm" -Certificate $rootCert

Next, we run the command on the consumer farm.

PS > $rootCert =

>> Get-PfxCertificate -FilePath "\\SPServer01\Share\PublishingRootCert.cer"

PS > New-SPTrustedRootAuthority -Name "Publishing Farm" -Certificate $rootCert

289Chapter 18: Managing Service Appl ications

Copying an STS Certificate
To export the STS certificate, you can use the Get-SPSecurityTokenServiceConfig
cmdlet. This cmdlet returns an object of type Microsoft.SharePoint.Administration
.Claims.SPSecurityTokenServiceManager, which represents the STS in the farm.
This type provides the LocalLoginProvider property, which represents the local STS
login settings, and the SigningCertificate property, which you can use to retrieve
the STS X.509 certificate.

TIP To learn more about Secure Token Services and claims-based authentication, we recommend
reading the TechNet article on authentication planning, at http://technet.microsoft.com/en-us/library/
cc288475.aspx.

The following example demonstrates how to export an STS certificate on the
consumer farm to a file on a shared folder.

PS > $c =

>> (Get-SPSecurityTokenServiceConfig).LocalLoginProvider.SigningCertificate

PS > $c.Export("Cert") |

>> Set-Content -Path "\\SPServer01\Share\ConsumingSTSCert.cer" -Encoding byte

To copy the STS certificate to the publishing farm, use the New-
SPTrustedServiceTokenIssuer cmdlet. The cmdlet sets up a trust between the
farms using the STS certificate. The following example demonstrates how to add the
STS certificate to the publishing farm.

PS > $stsCert =

>> Get-PfxCertificate -FilePath "\\SPServer01\Share\ConsumingSTSCert.cer"

PS > New-SPTrustedServiceTokenIssuer -Name "Consumer Farm" `

>> -Certificate $stsCert

Once the root certificates are exchanged between the farms and the STS certificate
has been copied to the publishing farm, you can go ahead and configure the
Application Discovery and Load Balancing Service Application (also known as the
Topology Service), which handles the discovery of a farm’s service applications.

Configuring the Application Discovery
and Load Balancing Service Application
Granting the consumer farm permissions to the Application Discovery and Load
Balancing Service Application establishes a relationship between the farms and allows
you to set permissions to other service applications as well.

You can manage the security for a service application using the Set-
SPServiceApplicationSecurity cmdlet. In the next example, we retrieve a
claims provider that provides claim information that relates to the server farm.

PS > $claimProvider = (Get-SPClaimProvider -Identity System).ClaimProvider

290 PowerShel l for Microsoft SharePoint 2010 Administrators

Next, we use the New-SPClaimsPrincipal cmdlet to create a new claims principal.

PS > $claimsPrincipal = New-SPClaimsPrincipal -ClaimType `

>> "http://schemas.microsoft.com/sharepoint/2009/08/claims/farmid" `

>> -ClaimProvider $claimprovider `

>> -ClaimValue "27ea4ca4-9a17-4a3a-b862-75dbe5a0f424"

In this example, we use the –ClaimType parameter and specify a URI used for the
farm identifier claim type. We use the –ClaimProvider parameter and specify the
claims provider reference stored in the claimProvider variable. Finally, we use the
ClaimValue parameter and specify the consumer farm’s GUID.

NOTE You can find the consumer farm’s GUID by running the following command on the
consumer farm: (Get-SPFarm).Id.

You can add the claims principal to a SPObjectSecurity object using the Grant-
SPObjectSecurity cmdlet. In the following example, we add a new security principal
containing a claims principal and grant the principal Full Control rights, which is
the only permission level supported by the Topology Service Application.

PS > $security = Get-SPTopologyServiceApplication |

>> Get-SPServiceApplicationSecurity

PS > Grant-SPObjectSecurity -Identity $security `

>> -Principal $claimsPrincipal -Rights "Full Control"

Finally, we update the Topology Service Application with the security principal
using the Set-SPServiceApplicationSecurity cmdlet.

PS > Get-SPTopologyServiceApplication |

>> Set-SPServiceApplicationSecurity -ObjectSecurity $security

Once the Application Discovery and Load Balancing Service Application is
configured, you can publish a service application.

Publishing a Service Application
You can use the Publish-SPServiceApplication cmdlet to publish a service
application. In this example, we will publish the metadata service application, which
will enable content types and terms to be accessible on the consuming farm.

PS > Publish-SPServiceApplication `

>> -Identity (Get-SPServiceApplication -Name "MetadataServiceApp")

Next, we need to create a new metadata service application proxy on the
consuming farm that connects to the published service application on the publishing

291Chapter 18: Managing Service Appl ications

farm. Adding a remote connection requires the URI of the published metadata service.
First, we retrieve the URL of the Topology Service by typing the following command on
the publishing farm:

PS > (Get-SPTopologyServiceApplication).LoadBalancerUrl.AbsoluteUri

https://rig8c3:32844/Topology/topology.svc

Then we use the Receive-SPServiceApplicationConnectionInfo cmdlet on
the consumer farm to retrieve the URI of the published managed metadata service
applications. This example returns an object of type System.Uri.

PS > $uri = (Receive-SPServiceApplicationConnectionInfo `

>> -FarmUrl https://rig8c3:32844/Topology/topology.svc |

>> Where-Object {$_.Name -eq "MetadataServiceApp"}).Uri

Next, we create a new metadata service application proxy using the System.Uri
object stored in the uri variable as value for the Uri parameter and add the new proxy
to the default proxy group.

PS > New-SPMetadataServiceApplicationProxy -Name "Metadata Service App Proxy" `

>> -URI $uri -DefaultProxyGroup

Finally, we grant permissions to the published managed metadata service
application to allow the consumer farm to connect to it. The metadata service
application supports three different types of permissions: Read Access to Term
Store, Read and Restricted Write Access to Term Store, and Full Access
to Term Store. The following example demonstrates how to set up the metadata
service application permissions.

PS > $claimProvider = (Get-SPClaimProvider -Identity System).ClaimProvider

PS > $claimsPrincipal = New-SPClaimsPrincipal -ClaimType `

>> "http://schemas.microsoft.com/sharepoint/2009/08/claims/farmid" `

>> -ClaimProvider $claimprovider `

>> -ClaimValue "27ea4ca4-9a17-4a3a-b862-75dbe5a0f424"

PS > $security =

>> Get-SPMetadataServiceApplication -Identity MetadataServiceApp |

>> Get-SPServiceApplicationSecurity

PS > Grant-SPObjectSecurity -Identity $security `

>> -Principal $claimsPrincipal -Rights "Read Access to Term Store"

PS > Get-SPTopologyServiceApplication |

>> Set-SPServiceApplicationSecurity -ObjectSecurity $security

We have now gone through the steps that are necessary to publish a service
application from one farm to another, allowing the consuming farm to pull data from
the managed metadata service application.

292 PowerShel l for Microsoft SharePoint 2010 Administrators

Additional Functionality in SharePoint 2010
Service applications can be managed through the Central Administration site. As
discussed in Chapter 2, you have the option to delegate the administration of each
service application individually. Creating, modifying, and deleting service applications
and their associations are also easily done through Central Administration, as shown in
Figure 18-2.

Figure 18-2. Changing service application associations for a proxy group

Additionally, Central Administration offers an interface for publishing service
applications. You can use the Publish button in the Central Administration site to
publish a service application, as shown in Figure 18-3.

293Chapter 18: Managing Service Appl ications

Summary
In this chapter, we demonstrated many of the built-in Windows PowerShell cmdlets
for managing service applications in SharePoint 2010. We created a new managed
metadata service application, and then associated it with a new proxy group. We also
briefly looked at how to change the settings of a service application. In our example, we
added a new administrator and specified the site collection to be used as the content
type hub.

We then looked at the steps that need to be taken to publish a service application for
interfarm access. This required setting up a trust between two SharePoint 2010 farms
and exchanging root certificates.

Figure 18-3. Publishing a service application from Central Administration

This page intentionally left blank

295

CHAPTER 19 Managing Users and Groups

296 PowerShel l for Microsoft SharePoint 2010 Administrators

Acommon question when implementing SharePoint is how site permissions
should be handled. The short answer is that it depends on how the SharePoint
 site or sites are used. In some cases, the best way is to add Active Directory

groups into SharePoint groups. In scenarios where access rights change often, it might
be better to add individual user accounts to SharePoint groups directly. Managing these
SharePoint groups and their members could quickly turn into a lot of time-consuming
tasks. Another situation arises when you have a number of sites that are inheriting
permissions from a single parent, but then at some point need to start using their own
unique permissions—thus bringing about the requirement to create new groups for
each site.

Along with groups, individual user accounts must be managed. For example,
when an employee has left the company, the account is usually disabled or deleted in
the Active Directory, but in SharePoint, the user still shows up in the site permissions.
Security-wise this is not a problem as long as the account is disabled or removed, but it
often generates a lot of questions since the SharePoint users cannot see that the account
is disabled.

In this chapter, we will cover how to can manage SharePoint groups and user
permissions with Windows PowerShell by implementing simple yet useful functions
for creating, modifying, and deleting SharePoint groups. We will also go through
populating groups with user accounts, as well as modifying and removing users.

Working with Groups
Groups in a site collection can be retrieved using the SiteGroups property of any of
the instances of the Microsoft.SharePoint.SPWeb class that are members of this site
collection. The property returns a collection of objects of type Microsoft.SharePoint
.SPGroup. The following example demonstrates how to store a collection of groups in
a variable and use the Select-Object cmdlet to retrieve some basic information about
the groups.

PS > $spWeb = Get-SPWeb http://nimaintra.net

PS > $spGroupCollection = $spWeb.SiteGroups

PS > $spGroupCollection | Select-Object -Property Name, Owner, Description

To retrieve only the groups for a specific site, use the Groups property instead of
the SiteGroups property.

Creating Groups
The Microsoft.SharePoint.SPGroupCollection class provides the Add method
for adding new groups to a site collection. The method has parameters for the name,
owner, default user, and description. The name and description parameters are of type
System.String, so you can simply use string literals as values for them. The owner
and default user parameters are of types Microsoft.SharePoint.SPMember and

297Chapter 19: Managing Users and Groups

Microsoft.SharePoint.SPUser, respectively. You can use the Get-SPUser cmdlet
to obtain the values to be passed to the method.

The following example demonstrates how to add a new group to a site collection.

PS > $owner = Get-SPUser -Web http://nimaintra.net -Identity POWERSHELL\maka

PS > $defaultUser =

>> Get-SPUser -Web http://nimaintra.net -Identity POWERSHELL\nigo

PS > $spGroupCollection.Add("New Group",$owner,$defaultUser,"Group Description")

If the users do not exist in the site, the Get-SPUser command will fail. You can
add a user to a site using the New-SPUser cmdlet, as described later in this chapter.
Alternatively, you can use the EnsureUser method to add a user to the sites User Info
list, as demonstrated here:

PS > $spWeb.EnsureUser("powershell\nigo")

Adding groups as shown in this example works only for Web applications that use
Windows authentication. If the Web application is using claims-based authentication,
you can use the following code instead.

PS > $owner = Get-SPUser -Web http://nimaintra.net -Identity `

>> (New-SPClaimsPrincipal POWERSHELL\maka -IdentityType WindowsSamAccountName)

PS > $defaultUser = Get-SPUser -Web http://nimaintra.net -Identity `

>> (New-SPClaimsPrincipal POWERSHELL\nigo -IdentityType WindowsSamAccountName)

PS > $spGroupCollection.Add("New Group",$owner,$defaultUser,"Group Description")

The following function, New-SPGroup, automates the task of adding groups.

function New-SPGroup(

 [string]$url,

 [string]$group,

 [string]$owner,

 [string]$defaultUser,

 [string]$description

) {

 $spWeb = Get-SPWeb $url

 # Store groups in collection

 $spGroupCollection = $spWeb.SiteGroups;

 # Check if group already exists

 if ($spGroupCollection[$group]) {

 Write-Host "The group: $group already exists";

 } else {

 # Check if Web application uses Claims authentication

 if ($spWeb.Site.WebApplication.UseClaimsAuthentication) {

 $owner = (New-SPClaimsPrincipal $owner `

 -IdentityType WindowsSamAccountName).ToEncodedString();

 $defaultUser = (New-SPClaimsPrincipal $defaultUser `

 -IdentityType WindowsSamAccountName).ToEncodedString();

 }

298 PowerShel l for Microsoft SharePoint 2010 Administrators

 # Ensure user

 if(($spWeb.EnsureUser($owner)) -and ($spWeb.EnsureUser($defaultUser))) {

 $objOwner = Get-SPUser -Web $url -Identity $owner;

 $objdefaultUser = Get-SPUser -Web $url -Identity $defaultUser;

 # Create Group

 $spGroupCollection.Add($group,$objOwner,$objDefaultUser,$description);

 }

 }

 $spWeb.Dispose()

}

To use the New-SPGroup function to add a new group to a site collection, type the
following:

PS > New-SPGroup -url http://nimaintra.net -group "New Group" `

>> -owner powershell\maka -defaultUser powershell\nigo -description "My Group"

If the group already exists, the function returns “Group already exists.” Otherwise,
the group is created in the site collection.

Modifying SharePoint Groups
You can also modify existing groups in SharePoint 2010 using Windows PowerShell.
First, retrieve an existing group from the group collection, as shown here:

PS > $spWeb = Get-SPWeb http://nimaintra.net

PS > $spGroupCollection = $spWeb.SiteGroups

PS > $spGroup = $spGroupCollection["New Group"]

Since this is a task that might be repeated many times, we wrap the code up in
a function named Get-SPGroup.

function Get-SPGroup([string]$url, [string]$group) {

 $spWeb = Get-SPWeb $url

 $spGroupCollection = $spWeb.SiteGroups;

 $spWeb.Dispose()

 return $spGroupCollection[$group];

}

In this function, we store a group collection in the variable spGroupCollection
and return a specific group by using the group name as the index value. You can use
the function by typing the following:

PS > $spGroup = Get-SPGroup -url http://nimaintra.net -group "New Group"

With an instance of a Microsoft.SharePoint.SPGroup object stored in a
variable, we can change the properties of the group. The next example demonstrates
how to change the group name.

PS > $spGroup.Name = "New Group Name"

299Chapter 19: Managing Users and Groups

It’s also possible to change the value of the Description property. However, this
property does not surface anywhere in the browser-based user interface. What appears
in the browser on the groups.aspx page is actually the value of the About Me (with
the internal name Notes) field of the corresponding item in the User Info list. This is set
to the same value as the group’s description once when the group is created, but is not
changed later if the value of the Description property changes. And if a user edits a
group’s description in the browser, this doesn’t change the value of the Description
property either. The following example demonstrates how to set the value of a group’s
Description property and set the Notes property of the corresponding item in the
User Info list.

PS > $spGroup.Description = "New Description"

PS > $spGroupListItem = ($spWeb.Lists["User Information List"].Items |

>> Where-Object {$_["Group"] -eq $spGroup.Name})

PS > $spGroupListItem["Notes"] = $spGroup.Description

PS > $spGroupListItem.Update()

To change the owner of the group, you assign to the Owner property an object of
type Microsoft.SharePoint.SPUser, which can be retrieved using the Get-SPUser
cmdlet.

PS > $spGroup.Owner =

>> Get-SPUser -Web http://nimaintra.net -Identity POWERSHELL\maka

The final step is to use the Update method to commit the changes to SharePoint.

PS > $spGroup.Update()

The following Set-SPGroup function wraps up the code to modify groups in
a reusable function.

function Set-SPGroup(

 [string]$url,

 [string]$group,

 [string]$name,

 [string]$owner,

 [string]$description

) {

 $spWeb = Get-SPWeb $url

 # Store groups in collection

 $spGroupCollection = $spWeb.SiteGroups

 # Get group

 $spGroup = $spGroupCollection[$group]

 if($spGroup) {

 # Change group name

 if($name) {

 $oldName = $spGroup.Name

300 PowerShel l for Microsoft SharePoint 2010 Administrators

 $spGroup.Name = $name

 }

 # Change owner

 if($owner) {

 if($spWeb.Site.WebApplication.UseClaimsAuthentication) {

 $owner = (New-SPClaimsPrincipal $owner `

 -IdentityType WindowsSamAccountName).ToEncodedString()

 }

 # Ensure user

 if($spWeb.EnsureUser($owner)) {

 $spUser = Get-SPUser -Web $url -Identity $owner

 $spGroup.Owner = $spUser

 }

 }

 # Change description

 if($description) {

 $spGroup.Description = $description;

 # Update item in User Information List

 $spGroupListItem = ($spWeb.Lists["User Information List"].Items |

 Where-Object {$_["Group"] -eq $oldName})

 $spGroupListItem["Notes"] = $description

 $spGroupListItem.Update()

 }

 # Update group

 $spGroup.Update()

 } else {

 Write-Host "Group: $group not found"

 }

 $spWeb.Dispose()

}

Run the function by typing the following:

PS > Set-SPGroup -url http://nimaintra.net -group "New Group" `

>> -name "New name" -owner powershell\nigo -description "New group Description"

In this example, we use the Set-SPGroup function to change the name, owner, and
description of an existing SharePoint group.

Removing Groups
The Microsoft.SharePoint.SPGroupCollection class provides the Remove
method for removing a group from a site collection in SharePoint 2010. The Remove

301Chapter 19: Managing Users and Groups

method uses the group name as identifier when removing a group. The next example
demonstrates how to retrieve a group collection and remove a group from it.

PS > $spWeb = Get-SPWeb http://nimaintra.net

PS > $spGroupCollection = $spWeb.SiteGroups

PS > $spGroupCollection.Remove("New Group")

The following Remove-SPGroup function wraps up the code to remove groups.

function Remove-SPGroup([string]$url, [string]$group) {

 $spWeb = Get-SPWeb $url

 $spGroupCollection = $spWeb.SiteGroups

 $spGroupCollection.Remove($group)

 $spWeb.Dispose()

}

You can use the function by typing the following:

PS > Remove-SPGroup -url http://SPServer01 -group "New Group"

Working with Users
Several Windows PowerShell cmdlets are available for managing user accounts. These
allow you to add, modify, and remove users.

Adding Users in SharePoint 2010
The SharePoint 2010 Management shell includes the New-SPUser cmdlet, which you
can use to add a user account to a SharePoint site collection. The cmdlet requires a site
collection and a user alias when adding a user to a site collection, as demonstrated here:

PS > New-SPUser -UserAlias powershell\seze -web http://nimaintra.net

It is also possible to set additional user properties such as display name, e-mail, and
mobile number using the corresponding parameters supported by the New-SPUser cmdlet.

The New-SPUser cmdlet also supports the PermisssionLevel parameter to set
a permission level for a user, such as Full, Contribute, Read, or All. In the next
example, we add a new user and set the permission level to Contribute.

PS > New-SPUser -UserAlias powershell\seze -web http://nimaintra.net `

>> -PermissionLevel Contribute

In the following example, we add a new user and add the user to an existing
SharePoint group which makes the user inherit the permissions from the group.

PS > New-SPUser -UserAlias powershell\seze -web http://nimaintra.net `

>> -Group 'New Group'

302 PowerShel l for Microsoft SharePoint 2010 Administrators

Finally, here’s how to add a new user as a site collection administrator:

PS > New-SPUser -UserAlias powershell\seze -web http://nimaintra.net `

>> -SiteCollectionAdmin

Modifying Users in SharePoint 2010
You can manage existing users in SharePoint 2010 using the Set-SPUser cmdlet. In the
following example, we use the Get-SPUser cmdlet to retrieve a specific user and pipe
the object to the Set-SPUser cmdlet to change the user’s display name.

PS > Get-SPUser -Web http://nimaintra.net -Identity powershell\nigo |

>> Set-SPUser -DisplayName "Goude"

This changes the value of both the DisplayName property and the Name property
on the object.

It is also possible to synchronize user information from the user directory store
using the SyncFromAD switch parameter.

PS > Get-SPUser -Web http://nimaintra.net -Identity powershell\nigo |

>> Set-SPUser -SyncFromAD

The Set-SPUser cmdlet supports the AddPermissionLevel parameter to add a
permission level to a specific user. The permission level must be one of the following
types: Contribute, Design, Full Control, Limited Access, or Read. In the next
example, we add the Contribute permission level to a user in SharePoint 2010.

PS > Set-SPUser -AddPermissionLevel "Contribute" -Web http://nimaintra.net `

>> -Identity powershell\nigo

To remove a permission level from a specific user, use the
RemovePermissionLevel parameter.

PS > Set-SPUser -RemovePermissionLevel "Contribute" -Web http://nimaintra.net `

>> -Identity powershell\nigo

To clear all the granted permissions for a user, use the ClearPermissions switch
parameter.

You can add a user to a specific group using the Group parameter.

PS > Set-SPUser -Web http://nimaintra.net -Identity powershell\nigo `

>> -Group "Home Members"

In this example, we add the user powershell\nigo to the Home Members group.

303Chapter 19: Managing Users and Groups

It is also possible to store an instance of the Microsoft.SharePoint.SPGroup
class in a variable and use the variable as input to the Group parameter. The next
example demonstrates this.

PS > $spGroup = Get-SPGroup -url http://SPServer01 -group "Home Members"

PS > Get-SPUser -Web http://SPServer01 -Identity powershell\nigo |

>> Set-SPUser -Group $spGroup

Removing Users in SharePoint 2010
You can remove users from a group or site in SharePoint 2010 using the Remove-SPUser
cmdlet. To remove a user from a specific group, use the Group parameter.

PS > Remove-SPUser -Web http://nimaintra.net -Identity powershell\nigo `

>> -Group "Viewers"

In this example, we remove the user powershell\nigo from the Viewers group.

NOTE The Remove-SPUser cmdlet does not remove the user from the Active Directory
Domain Services.

To remove a user from a site, use the Identity parameter supported by the
Remove-SPUser cmdlet,

PS > Get-SPWeb -Identity http://nimaintra.net |

>> Remove-SPUser -Identity powershell\nigo

Additional Functionality in SharePoint 2010
Managing users and groups from the graphical user interface has become a lot easier
in SharePoint 2010, and with the use of the Office Ribbon, it has become much more
user-friendlier. As we mentioned in Chapter 1, the Check Permissions feature makes
it possible to check which permissions a specific user has on the site, including the
permissions obtained through membership in Active Directory groups that are added
to the site.

When creating new sites from the user interface, you can specify if the site should
inherit permissions from the parent or if it should have unique permissions. If you
select unique permissions, you will be presented with a page where you create or select
three existing user groups that will be used for hosting viewers, members, and owners
of the site, as shown in Figure 19-1. These are known as associated groups.

304 PowerShel l for Microsoft SharePoint 2010 Administrators

Even though the Viewers, Members, and Owners groups have a default permission
level assigned, you can change the permissions, as shown in Figure 19-2. For example,
you might choose to prevent contributors from modifying the site using SharePoint
Designer or other remote interfaces.

Through the graphical user interface, you can easily remove users from SharePoint
groups. For example, when a user has left the company, you can delete the user’s

Figure 19-1. Creating or reusing existing SharePoint groups for a new site

305Chapter 19: Managing Users and Groups

profile from the User Profile Service application, as shown in Figure 19-3. This
will remove the My Site for the specific user. Then when you click the user’s name
somewhere within SharePoint, you will get to the current site’s local user information
page instead of the user’s My Site. From here, users with sufficient permissions have
the option to remove the user from the site collection, and that user will then be deleted
from all SharePoint groups within the site collection.

NOTE Users are never completely removed from SharePoint. This is to avoid having content
items with “unknown” authors.

Figure 19-2. Changing the default permission levels

306 PowerShel l for Microsoft SharePoint 2010 Administrators

Summary
In this chapter, we looked how to use Windows PowerShell to manage SharePoint users
and groups by creating several reusable scripts. We used the Add and Delete methods
of the SPGroupCollection class to create and delete groups. When modifying groups,
we first retrieved the group using the SiteGroups property of the SPWeb class.

We also demonstrated how to work with users using the Get-SPUser, New-SPUser,
Set-SPUser, and Remove-SPUser cmdlets.

Figure 19-3. Deleting a user profile from the User Profile Service application

307

CHAPTER 20 Working with Content
Databases

308 PowerShel l for Microsoft SharePoint 2010 Administrators

As the use of SharePoint increases within the organization, it is very common to
see the amount of content stored in SharePoint grow dramatically. This makes
it necessary to increase the number of content databases to maintain good

performance. Having a large number of content databases is not a problem in itself,
since SharePoint 2010 supports hundreds of content databases per Web application. The
issue is that it’s important to maintain a good naming standard for all those databases.
Unfortunately, it is very often the case that there is no naming standard applied at all,
causing difficulties in distinguishing which content databases are used by which Web
application. This makes troubleshooting more difficult, not to mention the frustration it
causes the SQL Server team.

In our first scenario in this chapter, we will address the database-naming problem
by creating a Windows PowerShell script that first detaches all content databases from
a Web application, renames them on SQL Server using a defined naming standard, and
then reattaches the content databases to the Web application. This will create consistent
database names on SQL Server and remove database names containing GUIDs and
similar elements.

By default, any binary large object (BLOB) in SharePoint 2010, such as the contents
of a document in a document library, is stored inside a content database, in a column of
type IMAGE. As usage increases, the total amount of BLOB data can easily outgrow the
structured data stored in your content databases, thus making database operations less
efficient. To address this, SharePoint 2010 offers the ability to use Remote BLOB Storage
(RBS) providers, allowing you to configure your Microsoft SQL Server 2008 to store the
BLOB data outside the database using more cost-efficient storage solutions.

In our second scenario, we will look at how to configure SharePoint 2010 and
Microsoft SQL Server 2008 to use the RBS FILESTREAM provider included in
the Microsoft SQL Server 2008 R2 Feature Pack.

Managing Content Database Naming
Our solution involves detaching the content databases from a Web application,
renaming those databases, and then reattaching them. Since we want to rename the
content databases in the SQL Server instance, and then connect them again with new
names but the same values for the Maximum Number of Site Collections and Site
Collection Level Warning settings, we need to store the information about these values
before we detach the content database.

Storing Content Database Information
The Web application used in this example includes two content databases. For
demonstrative purposes, we will start by working with a single content database.

First, we use the Get-SPContentDatabase cmdlet to retrieve information about
a specific content database.

309Chapter 20: Working with Content Databases

PS > $cd = Get-SPContentDatabase -WebApplication http://nimaintra.net |

>> Where-Object { $_.Name -eq "WSS_Content" }

Since it’s very easy to work with XML data in Windows PowerShell, we will store the
information from the content database in an object of type System.Xml.XmlDocument.
Here, we create the object:

PS > [xml]$xml = @"

>> <ContentDatabases>

>> <ContentDatabase>

>> <Name>{0}</Name>

>> <NewName></NewName>

>> <MaxSiteLevel>{1}</MaxSiteLevel>

>> <WarningSiteLevel>{2}</WarningSiteLevel>

>> <DatabaseStatus>{3}</DatabaseStatus>

>> <Server>{4}</Server>

>> </ContentDatabase>

>> </ContentDatabases>

>> "@ -f $cd.Name, $cd.MaximumSiteCount, $cd.WarningSiteCount,

>> $cd.Status, $cd.Server

When we use the [xml] cast as shown in this example, the input here-string is
converted to an object of type System.Xml.XmlDocument. The first tag created in
this example defines the top-level node and is followed by elements. The lowest-level
elements (the ones that do not have any children) are regarded by Windows PowerShell
as object properties.

We also use the format operator to assign values to the properties. We can type the
variable’s name followed by ContentDatabases.ContentDatabase to display the
properties available in the element.

PS > $xml.ContentDatabases.ContentDatabase

Name : WSS_Content

NewName :

MaxSiteLevel : 15000

WarningSiteLevel : 9000

DatabaseStatus : Online

Server : SQLServer01

As we said, our Web application has another content database, so we need to
add elements to the XMLDocument object for that database. First, we’ll retrieve the
additional content database using the Get-SPContentDatabase cmdlet.

PS > $cd2 = Get-SPContentDatabase -WebApplication http://nimaintra.net |

>> Where-Object { $_.Name -eq "WSS_Content2" }

310 PowerShel l for Microsoft SharePoint 2010 Administrators

Next, we use a here-string followed by the format operator to store the information
from the content database in an object, which we can use to insert XML code into our
existing XMLDocument object.

PS > $properties = @"

>> <Name>{0}</Name>

>> <NewName></NewName>

>> <MaxSiteLevel>{1}</MaxSiteLevel>

>> <WarningSiteLevel>{2}</WarningSiteLevel>

>> <DatabaseStatus>{3}</DatabaseStatus>

>> <Server>{4}</Server>

>> "@ -f $cd2.Name, $cd2.MaximumSiteCount, $cd2.WarningSiteCount,

>> $cd2.Status, $cd2.Server

Adding the code to the XMLDocument object requires that we create a new element
using the CreateElement() method supported by objects of this type.

PS > $element = $xml.CreateElement("ContentDatabase")

Next, we add the inner structure of the element using the InnerXml property.

PS > $element.InnerXml = $properties

Finally, we add the element to the XMLDocument object using the AppendChild()
method.

PS > [void]$xml.ContentDatabases.AppendChild($element)

The NewName property does not contain a value, since we haven’t decided on a new
naming standard for the content databases yet. Let’s go ahead and add a value to the
property.

PS > for ($i=0;

>> $i -lt ([array]$xml.ContentDatabases.ContentDatabase).Count;

>> $i++) {

>> ([array]$xml.ContentDatabases.ContentDatabase)[$i].NewName =

>> "NimaIntra_ContentDB_{0:d2}" -f $($i + 1)

>> }

In this example, we use a for loop to iterate through each element and assign a
value to the NewName property. When assigning a value, we use the format operator
to ensure that the numeric value provided on the right-hand side always includes two
digits. When we display the values, we see that the strings end with two digits.

PS > $xml.ContentDatabases.ContentDatabase | Format-List Name, NewName

Name : WSS_Content

NewName : NimaIntra_ContentDB_01

311Chapter 20: Working with Content Databases

Name : WSS_Content2

NewName : NimaIntra_ContentDB_02

Finally, we can save the XML document as a file on a local disk.

PS > $xml.Save("E:\ContentDatabase.xml")

Detaching Content Databases
In Chapter 4, we looked at how to retrieve a list of all content databases connected
to the farm or to a specific Web application using the Get-SPContentDatabase
cmdlet, as well as how to detach a content database from a Web application using
the Dismount-SPContentDatabase cmdlet. By piping the result from the Get-
SPContentDatabase cmdlet to the Dismount-SPContentDatabase cmdlet, you can
detach all content databases for a specific Web application with a simple command,
as follows:

PS > Get-SPContentDatabases -WebApplication http://nimaintra.net |

>> Dismount-SPContentDatabase

In this example, we will detach a specific content database for demonstrative purposes.

PS > $cd | Dismount-SPContentDatabase -Confirm:$false

Now let us see how we can change the name of the database in the SQL Server instance.

Renaming Content Databases
Windows PowerShell offers the ability to connect to an instance of the Microsoft SQL
Server service using an object of the type System.Data.SQLClient.SQLConnection,
which supports execution of queries against a SQL Server database. The following
Set-SQL function uses this feature to connect to a database and allow us to alter the
name of a database in SQL Server.

function Set-SQL([string]$command, [string]$connectionString) {

 $connection = New-Object System.Data.SQLClient.SQLConnection;

 $connection.ConnectionString = $connectionString;

 $connection.Open();

 $sqlCommand = New-Object System.Data.SQLClient.SQLCommand;

 $sqlCommand.Connection = $Connection;

 $sqlCommand.CommandText = $command;

 $sqlCommand.ExecuteNonQuery();

 $connection.Close();

}

The function supports two parameters: command and connectionString. It
commences by storing an object of type System.Data.SQLClient.SQLConnection

312 PowerShel l for Microsoft SharePoint 2010 Administrators

in a variable. Next, the connection string provided is used as value for the
ConnectionString property. The Open method is used to open a database connection
using the information specified in the ConnectionString. Then we create an object
of type System.Data.SQLClient.SQLCommand and use the connection variable
as the value for the Connection parameter and the command variable as value for the
CommandText parameter. When retrieving information from a database using a SELECT
statement, the ExecuteReader() method is used, but since we want to actually modify
a database, we use the ExecuteNonQuery() method instead. Finally, we close the
connection using the Close method.

A connection string includes the target database name and other information
needed to establish a connection. Let’s take a look at a typical connection string using
the value stored in the XML file we created earlier. First, we load the XML file into an
object in Windows PowerShell, as shown here:

PS > $xml = New-Object System.Xml.XmlDocument

PS > $xml.Load("E:\ContentDatabase.xml")

Next, we store the elements in a variable, working with a single content database
for this example.

PS > $xmlElement = $xml.ContentDatabases.ContentDatabase |

>> Where-Object { $_.Name -eq "WSS_Content" }

Now we use the value from the Server property as input to the connection string.

PS > $conn = "server=" +

>> $xmlElement.Server +

>> ";database=master;trusted_connection=true;"

Here’s what the resulting connection string looks like:

PS > $conn

server=SQLServer01;database=master;trusted_connection=true;

First, we add a server name using the value stored in the Server property, and then
we specify the database to use. Since we are going to alter the name of a database, we
need to use the master database. Finally we add trusted_connection=true, since
the SQL Server instance we are connecting to uses Integrated Windows Authentication.

TIP A good reference for other types of connection strings is available at
www.connectionstrings.com.

To make changes to the database, we use the Transact-SQL statement ALTER
DATABASE, which allows us to modify a database or the files and filegroups associated
with a database. First, we set the Restrict Access setting on the content database to
Single_User to get exclusive access, next we rename the database, and finally, we set
Restrict Access back to Multi_User. Here is how we build up the command string:

313Chapter 20: Working with Content Databases

PS > $command = "ALTER DATABASE " + $xmlElement.Name +

>> " SET SINGLE_USER WITH ROLLBACK IMMEDIATE; ALTER DATABASE " +

>> $xmlElement.Name + " MODIFY NAME = " +

>> $xmlElement.NewName + "; ALTER DATABASE " +

>> $xmlElement.NewName + " SET MULTI_USER"

And here’s what the string looks like:

PS > $command

ALTER DATABASE WSS_Content set single_user with rollback immediate; ALTER

DATABASE WSS_Content MODIFY NAME = NimaIntra_ContentDB_01; ALTER DATABASE

NimaIntra_ContentDB_01 SET MULTI_USER

We can execute this Transact-SQL statement using the Set-SQL function.

PS > Set-SQL -command $command -connectionString $conn

-1

The output from the function is returned from the ExecuteNonQuery() method inside
the function. When using UPDATE, INSERT, or DELETE statements, the value returned
represents the number of rows affected. Other statements, such as ALTER, return –1.

NOTE Changing the database name as shown in this example does not change either the logical
or the physical names of any of the database files. It is possible to use the ALTER DATABASE
Transact-SQL statement to change these names as well. You can read more about the ALTER
DATABASE statement at MSDN: http://msdn.microsoft.com/en-us/library/ms174269.aspx.

Reattaching Content Databases
The last step is to reattach the content database to the Web application using the
Mount-SPContentDatabase cmdlet. In the following example, we use the information
stored in the XML file as input to the cmdlet.

PS > Mount-SPContentDatabase $xmlElement.NewName -DatabaseServer `

>> $xmlElement.Server -WebApplication http://nimaintra.net `

>> -MaxSiteCount $xmlElement.MaxSiteLevel `

>> -WarningSiteCount $xmlElement.WarningSiteLevel -Confirm:$false

Scripting Content Database Renaming
The following Rename-SPContentDatabase.ps1 script puts together the previously
described commands to automate renaming multiple content databases attached to a
Web application. The script may need slight modifications to fit your environment.

param ([string]$webApplication, [string]$prefix, [string]$file)

function Set-SQL([string]$command, [string]$connectionString) {

 $connection = New-Object System.Data.SQLClient.SQLConnection;

314 PowerShel l for Microsoft SharePoint 2010 Administrators

 $connection.ConnectionString = $connectionString;

 $connection.Open();

 $sqlCommand = New-Object System.Data.SQLClient.SQLCommand;

 $sqlCommand.Connection = $Connection;

 $sqlCommand.CommandText = $command;

 $sqlCommand.ExecuteNonQuery();

 $connection.Close();

}

Create xml template

[xml]$xml = "<ContentDatabases></ContentDatabases>"

Store XML code in variable

$properties = @"

<Name>{0}</Name>

<NewName></NewName>

<MaxSiteLevel>{1}</MaxSiteLevel>

<WarningSiteLevel>{2}</WarningSiteLevel>

<DatabaseStatus>{3}</DatabaseStatus>

<Server>{4}</Server>

"@

Enumerate content databases in Web application

Get-SPContentDatabase -WebApplication $webApplication | ForEach-Object {

 # Create new XML element

 $element = $xml.CreateElement("ContentDatabase");

 $element.InnerXml = $properties -f $_.Name, $_.MaximumSiteCount,

 $_.WarningSiteCount, $_.Status, $_.Server;

 # Append element to the document

 [void]$xml["ContentDatabases"].AppendChild($element);

 # Detach Content Database

 Dismount-SPContentDatabase -Identity $_.ID -Confirm:$false;

} # end ForEach

Loop through the content databases in the XML file

for ($i=0; $i -lt ([array]$xml.ContentDatabases.ContentDatabase).Count; $i++) {

 # Pick content database to process

 $cd = ([array]$xml.ContentDatabases.ContentDatabase)[$i];

 # Create connection string using Windows integrated authentication

 $connection = "server=" + $cd.Server +

 ";database=master;trusted_connection=true;"

 # Calculate content database’s new name

 $newName = $prefix + "_{0:d2}" -f $($i + 1);

315Chapter 20: Working with Content Databases

 # Update XML document

 $cd.NewName = $newName;

 # Set the Restrict Access to Single_User

 # Rename the database to the new name

 # Set the Restrict Access to Multi_User

 $command = "ALTER DATABASE " + $cd.Name +

 " SET SINGLE_USER WITH ROLLBACK IMMEDIATE; ALTER DATABASE " +

 $cd.Name + " MODIFY NAME =" +

 $cd.newName+"; ALTER DATABASE " +

 $cd.newName+" SET MULTI_USER";

 # Apply changes SQL

 Set-SQL -command $command -connectionString $connection | Out-Null;

 # Attach content database with new name

 Mount-SPContentDatabase $cd.NewName -DatabaseServer $cd.Server `

 -WebApplication $webApplication -MaxSiteCount $cd.MaxSiteLevel `

 -WarningSiteCount $cd.WarningSiteLevel -Confirm:$false;

}

Save XML to file on disk for reference

if ($file) {

 $xml.Save($file);

}

You can use the script to rename multiple content databases in a Web application by
typing the following:

PS > .\Rename-SPContentDatabases.ps1 `

>> -WebApplication http://workspaces.nima.net `

>> -prefix SharePoint_Workspace_ContentDB -file e:\ContentDatabases.xml

This example changes the names of all content databases in a Web application to
standardized names and outputs an XML file containing specific content database
information.

Setting Up Remote BLOB Storage
RBS is a set of APIs available as an add-on feature pack for the Microsoft SQL Server
2008. It allows storage and retrieval of BLOBs outside SQL database files. By storing
BLOBs outside a content database, you can significantly decrease the size of your
database, which is key when it comes to successful storage optimization of large
SharePoint farms. One of the main benefits of moving BLOBs to a storage solution
is the opportunity to reduce the total cost of ownership (TCO) for the SharePoint
environment.

316 PowerShel l for Microsoft SharePoint 2010 Administrators

SharePoint 2010 supports the RBS FILESTREAM provider, which is included in the
SQL Server Remote BLOB Store installation package. The RBS FILESTREAM provider
uses the SQL Server FILESTREAM that stores BLOB content on the local file system.

NOTE The FILESTREAM provider included in Microsoft SQL Server 2008 offers only a small
amount of the functionality available within the RBS API. For instance, you can save BLOBs only
to the local disk. Other RBS providers allow you to save BLOBs to any type of media. One such
provider is the free DocAve Extender from AvePoint (www.avepoint.com), which offers a wide range
of functions and allows you to set up rules for how and where BLOBs should be stored.

Configuring the Database to Use RBS
First, you need to enable the FILESTREAM provider on SQL Server. In the SQL Server
Configuration Manager console, select the SQL Server Services node (on the left side
of the window), right-click the SQL Server service instance for which you want to
enable the FILESTREAM provider, and select Properties. In the dialog box, select the
FILESTREAM tab, select the Enable FILESTREAM for Transact-SQL access check box,
and specify the name of a file share to use, as shown in Figure 20-1.

Figure 20-1. Enabling the FILESTREAM provider on a SQL Server instance

317Chapter 20: Working with Content Databases

Next, you need to set the correct access level. In the following example, we use the
Set-SQL function we created earlier in this chapter to set the FILESTREAM access level
to 2, which enables Transact-SQL and allows Win32 APIs to work with the files.

PS > $conn =

>> "server=SQLServer01;database=NimaIntra_ContentDB_01;trusted_connection=true;"

PS > $command = "EXEC sp_configure filestream_access_level, 2 RECONFIGURE"

PS > Set-SQL -command $command -connectionString $conn

After the FILESTREAM provider is enabled and the access level is set to 2, we can
provision a BLOB store.

First, we check if a master key exists. If not, we create one with a specific password,
as demonstrated here:

PS > $command = "IF NOT EXISTS (SELECT * FROM sys.symmetric_keys " +

>> "WHERE name = N'##MS_DatabaseMasterKey##') CREATE master key encryption " +

>> "BY password = N'P@assw0rd'"

PS > Set-SQL -command $command -connectionString $conn

Next, we add a new filegroup, specifying CONTAINS FILESTREAM.

PS > $command = "IF NOT EXISTS (SELECT groupname FROM sysfilegroups WHERE " +

>> "groupname=N'RBSFSProvider')ALTER DATABASE [NimaIntra_ContentDB_01] " +

>> "ADD FILEGROUP RBSFSProvider CONTAINS FILESTREAM"

PS > Set-SQL -command $command -connectionString $conn

The last step is to add a virtual file to the newly created filegroup and associate it
with a directory on the local file system. Note that the lowest level directory specified
in the path must not exist. The folder will be created by the Transact-SQL command.

PS > $command = "alter database [NimaIntra_ContentDB_01] add file " +

>> "(name = RBSFSFile, filename = 'C:\Blobstore') to filegroup RBSFSProvider"

PS > Set-SQL -command $command -connectionString $conn

The database is now configured to use RBS.

Installing the RBS Provider
Now you need to install the RBS provider on all the Web servers in the SharePoint 2010
farm. Download the RBS.msi from the SQL Server 2008 R2 Feature Pack, at http://
go.microsoft.com/fwlink/?LinkID=177388.

Next, run the following command on the first Web server to start the installation.

PS > msiexec /qn /l*v C:\BLOB\Install_log.txt /i C:\BLOB\RBS.msi

TRUSTSERVERCERTIFICATE=true FILEGROUP=PRIMARY DBNAME="NimaIntra_ContentDB_01"

DBINSTANCE="sqlserver01" FILESTREAMFILEGROUP=RBSFSProvider

FILESTREAMSTORENAME=FILESTREAM_Blob_Store

318 PowerShel l for Microsoft SharePoint 2010 Administrators

This has the Microsoft Installer program install the RBS provider on the Web server.
We use the following parameters in this example:

 We set the UI level using the /qn parameter, so that a silent installation is
performed.

 We specify that a log file should be created and that the log file should contain
all available information, including verbose output, by using the /l*v
parameter followed by the path to the log file.

 We use the /i parameter and specify the path to the package that should be
installed.

 We set TRUSTSERVERCERTIFICATE to true so that connecting clients trust the
self-signed certificate for encrypted connections initiated by RBS.

 The FILEGROUP parameter sets the filegroup for internal tables.

 The DBNAME parameter indicates which database to use—the NimaIntra_
ContentDB_01 database in this example.

 The DBINSTANCE parameter points to the SQL Server instance.

 We specify the FILESTREAM BLOB store filegroup using the
FILESTREAMFILEGROUP parameter, pointing it to the FILESTREAM group
created in an earlier example.

 We set a new FILESTREAM store name with the FILESTREAMSTORENAME
parameter.

The command can take a while to complete. If you want to wait until the command
completes, you can use the Get-Process and Wait-Process cmdlets supported by
Windows PowerShell, as follows:

PS > Get-Process msiexec | Wait-Process

The RBS provider also needs to be installed on all additional Web front end
servers. Since the connection to the FILESTREAM group already exists, we specify the
components to install using the ADDLOCAL parameter.

PS > msiexec /qn /l*v C:\BLOB\Install_log.txt /i C:\BLOB\RBS.msi

DBNAME="NimaIntra_ContentDB_01" DBINSTANCE="sqlserver01"

ADDLOCAL="Client,Docs,Maintainer,ServerScript,

FilestreamClient,FilestreamServer"

Enabling RBS in SharePoint 2010
The final step is to enable RBS in SharePoint 2010. First, use the Get-SPContentDatabase
cmdlet to return a database.

PS > $contentDB = Get-SPContentDatabase -Identity NimaIntra_ContentDB_01

319Chapter 20: Working with Content Databases

The BLOB storage settings can be configured using the RemoteBlobStorageSettings
property. The SPRemoteBlobStorageSettings object associated with this property
supports the Installed() method, which we can use to check if the SQL Server RBS
is installed on the content database.

PS > $spRBSSettings = $contentDB.RemoteBlobStorageSettings

PS > $spRBSSettings.Installed()

True

Before we enable the resources required to use RBS, we set the value of the
ActiveProviderName property to the SQL Server RBS provider—FILESTREAM_Blob_
Store in this example.

PS > $spRBSSettings.SetActiveProviderName("FILESTREAM_Blob_Store")

If you are uncertain of the SQL Server RBS provider name, you can use the
GetProviderNames() method to display the names of all SQL Server RBS providers
registered on the content database.

PS > $spRBSSettings.GetProviderNames()

FILESTREAM_Blob_Store

Finally, we enable the resources required to use RBS using the Enable() method.

PS > $spRBSSettings.Enable()

It is also possible to set the minimum size of BLOBs stored in the BLOB store using
the MinimumBlobStorageSize parameter. By default, the value is set to 0, meaning
that all BLOBs are stored in the BLOB store. You can change the value so that only
BLOBs larger than a specific size are stored in the BLOB store by supplying a new value
as number of bytes. In the following example, we set the value to 250KB so that BLOBs
larger than 250KB are stored in the BLOB store and BLOBs smaller than 250KB are
stored in the content database.

PS > $spRBSSettings.MinimumBlobStorageSize = 250KB

Note that we use the multiplier suffix KB to represent the value in kilobytes. Other
supported multiplier suffixes are MB and GB.

To disable RBS on a content database, simply set the provider name to an empty
string using the SetActiveProviderName() method, as shown here:

PS > $contentDB = Get-SPContentDatabase -Identity NimaIntra_ContentDB_01

PS > $spRBSSettings = $contentDB.RemoteBlobStorageSettings

PS > $spRBSSettings.SetActiveProviderName([string]::Empty)

320 PowerShel l for Microsoft SharePoint 2010 Administrators

Additional Functionality in SharePoint 2010
You can attach and detach content databases from the Central Administration site, but
it does not allow you to rename the databases. To do that, you would need to detach
the content databases manually one by one, change their names on the SQL Server
instance, and then attach them with the new names.

When adding content databases to SharePoint, SharePoint will first check if a database
with the specified name already exists. If the existing database has no user-defined schema
(that is, it is empty) or has a SharePoint-compatible schema, SharePoint will try to attach it.
If SharePoint does not find the database on the specified SQL Server instance, it will create
the database for you.

The only way to control storage from Central Administration is to specify the
maximum amount of site collections that should be stored in the content database. This
will not limit the size of the content database, unless you are using site quotas on your
site collections.

Summary
In this chapter, we first demonstrated how to go outside SharePoint, connect to a SQL
Server instance, and used Windows PowerShell to run queries against content databases.
We stored the information about the configuration of some content databases in an XML
file and used SharePoint cmdlets to detach and reattach the databases. This example
really demonstrated the power of Windows PowerShell. It showed that you can work
with SQL Server, XML files, and SharePoint within one and the same script.

In the second scenario, we looked at how to enable a content database to use RBS
by installing the RBS FILESTREAM provider included in the Microsoft SQL Server 2008
R2 Feature Pack. We then enabled RBS using Windows PowerShell and showed how to
change vital RBS settings.

321

CHAPTER 21 Backup and Restore

322 PowerShel l for Microsoft SharePoint 2010 Administrators

In this last chapter of the book, we will look at the options for backup and restore of
SharePoint 2010 data using Windows PowerShell. As we have mentioned earlier,
backup and restore operations has been significantly improved in SharePoint 2010,

offering administrators much more granularity and better tools to quickly recover from
disasters or unintentional deletion of content.

Windows PowerShell cmdlets are available for backup and restore of items such as
farm configuration, content databases, and Web applications. The import and export
cmdlets offer granular backup and restore options in SharePoint 2010.

The new unattached content database feature of SharePoint 2010 lets you connect a
content database to your farm without attaching it to any specific Web application. This
makes it possible to export items such as sites or lists for restoration purposes, without
interfering with any of the Web applications running on the farm. In SharePoint 2007,
you needed a different “stand-by” farm to be able to accomplish these tasks. In the
last scenario, we will connect an unattached content database and demonstrate how to
export sites and lists using only Windows PowerShell.

Backing Up and Restoring SharePoint Farms
One of the most anticipated features when it comes to backup and restore of data in
SharePoint 2010 is the possibility to back up and restore the configuration settings
of a farm. This allows you to not only restore the farm configuration in case of a
disaster, but it also enables you to create a template with standardized settings to use
when installing new farms within the company or when provisioning new staging
environments. To perform a configuration-only backup of our farm, use the Backup-
SPConfigurationDatabase cmdlet.

PS> Backup-SPConfigurationDatabase -Directory \\SPServer01\Backup\ `

>> -DatabaseServer SPServer01 -DatabaseName SharePoint_NimaIntra_ConfigDB

Backup-SPConfigurationDatabase backs up just the configuration settings,
not the actual configuration database itself. This also means that items such as content
databases, Web applications, and service applications are not backed up.

NOTE You can also perform a back up of the farm configuration settings using the
Backup-SPFarm cmdlet with the ConfigurationOnly switch. Like Backup-
SPConfigurationDatabase, this backs up only the configuration settings, not the
configuration database.

To restore a farm configuration, use the Restore-SPFarm cmdlet with the
ConfigurationOnly parameter, and then simply point to the location where the backup
is stored. If the backup location contains more than one farm configuration, you can point
to a specific backup instance using the BackupId parameter. If a parameter is omitted,

323Chapter 21: Backup and Restore

the cmdlet will automatically use the latest backup instance available. In the following
example, we restore the configuration settings to the same farm using the RestoreMethod
parameter with the value Overwrite.

PS> Restore-SPFarm -Directory \\SPServer01\Backup\ -RestoreMethod Overwrite `

>> -ConfigurationOnly -BackupId 478ecd4b-e519-4c22-bb62-29b4a89d28d8

To create a new farm with the same configuration settings, change the RestoreMethod
value to New and add the parameter NewDatabaseServer to specify the SQL Server
instance to use as the default instance for the new farm.

PS> Restore-SPFarm -Directory \\SPServer01\Backup\ -RestoreMethod New `

>> -ConfigurationOnly -NewDatabaseServer SQLServer02

The Backup-SPFarm cmdlet allows you to back up the entire SharePoint farm. You
can also specify a particular Web application or content database. The Backup-SPFarm
cmdlet has the very useful ShowTree parameter, which returns a hierarchical list of all
the objects that you could back up individually as an alternative to doing a full farm
backup. Using the Item parameter, you can then select the object that you want to back
up. In the next example, we select the Web applications in the farm, and since we use
the ShowTree parameter, the cmdlet will display a list of objects that will be backed up
if this item is selected.

PS> Backup-SPFarm -ShowTree `

>> -Item "Microsoft SharePoint Foundation Web Application"

The next example retrieves all the Web applications using the Get-SPWebApplication
cmdlet and pipes the results to the ForEach-Object cmdlet, which executes the
Backup-SPFarm cmdlet using the current pipeline object as the value for the Item
parameter. We also specify that we want to use a full backup and set the amount of
threads to be used to ten (the default is three, and up to ten threads are supported).

PS> Get-SPWebApplication | ForEach-Object {

>> Backup-SPFarm -directory \\SPServer01\Backup\ `

>> -BackupMethod Full -item $_.DisplayName `

>> -BackupThreads 10 }

The Backup-SPFarm cmdlet also supports creating a backup of a specific content
database. The first time you make a backup of a content database, you must choose
full as backup method. As soon as you have a full backup of a content database, you
can perform differential backups by specifying differential as the backup method.
The next example demonstrates how to back up a specific content database using the
Item parameter, indicates where to store the backup using the Directory parameter,
and performs a full backup using the BackupMethod parameter.

PS > Backup-SPFarm -Directory \\spserver01\Backup\ -BackupMethod full `

>> -Item NimaIntra_ContentDB_01

324 PowerShel l for Microsoft SharePoint 2010 Administrators

You can view all the backup operations that have been performed using the
Get-SPBackupHistory cmdlet. In the following example, we indicate the location
of the backup files using the Directory parameter.

PS > Get-SPBackupHistory -Directory \\spserver01\Backup\

The cmdlet displays a list of all backups that have been performed. It also displays
a GUID of each backup instance, which you can use when restoring the backup, as
demonstrated here:

PS > Restore-SPFarm -Directory \\spserver01\Backup\ `

>> -RestoreMethod Overwrite -Item NimaIntra_ContentDB_01 `

>> -BackupId 87e466e2-7104-45e4-a6ce-4b1f2a670bc7

Creating Database Snapshots
In SharePoint 2010, you can create database snapshots of content databases using
Windows PowerShell. A database snapshot is a read-only copy of a database as it was at
the moment the snapshot was taken. Snapshots are very useful in backup and restore
scenarios.

NOTE Database snapshots are available only in the Enterprise and Developer editions of
Microsoft SQL Server.

In the following example, we create a snapshot using the CreateSnapshot()
method of the SPContentDatabase object.

PS > $contentDB = Get-SPContentDatabase -Identity NimaIntra_ContentDB_01

PS > $contentDB.Snapshots.CreateSnapshot()

Snapshots are always located on the same database server as the source database.
Snapshots can also be used when recovering data from unattached content databases,
as discussed later in this chapter.

Exporting and Importing Sites, Lists, and List Items
You can export sites, lists, and list items using the Export-SPWeb cmdlet. Here’s a one-
line command that exports a site, including all versions of all lists and libraries:

PS> Export-SPWeb http://nimaintra.net/finance -path "e:\backup\finance.cmp" `

>> -IncludeVersions All -IncludeUserSecurity -NoFileCompression

This example also exports the security settings (which contain information
about when and by whom objects has been created and modified). We use the

325Chapter 21: Backup and Restore

-NoFileCompression switch parameter to ignore the default compression. This is
mainly for performance improvement and is recommended when exporting larger sites.

Another option that could be useful when exporting large objects is to use the
-UseSqlSnapshot parameter, which will create a temporary SQL Server database
snapshot when the process starts and perform the export from the snapshot. When the
export is finished, the temporary snapshot is deleted.

If you want to perform a backup on each site in a site collection, you can loop
through a site collection using the ForEach-Object cmdlet.

PS > $folder = "\\SPServer\Backup\"

PS > Get-SPSite -Identity http://SPServer | Get-SPWeb |

>> ForEach-Object {

>> Export-SPWeb -Identity $_ `

>> -Path ($folder + ($_.Url -Replace "^(http|https):/{2}",

>> "" -Replace "/","_")) -Force

>>}

In this example, we use the replace operator and test if the value of $_.Url starts
with http or https, followed by the : character and two / characters. If a match is
made, the pattern is replaced. We also test if the value contains the character / and
replace it with the _ character. The Force switch parameter is also used to ensure that
existing backup files are overwritten.

The Export-SPWeb cmdlet can also export lists and libraries. To do this, use the
ItemUrl parameter and specify the relative URL to the list or library.

PS> Export-SPWeb http://nimaintra.net/finance -path "e:\backup\Calendar.cmp" `

>> -ItemUrl /finance/lists/Calendar -IncludeVersions All -IncludeUserSecurity

To import objects that have been exported from Central Administration or by using
the Export-SPWeb cmdlet, use the Import-SPWeb cmdlet. The following example
imports the Finance site we exported in our previous example.

PS> Import-SPWeb http://nimaintra.net/finance -Path e:\backup\Finance.cmp `

>> -IncludeUserSecurity -NoFileCompression

NOTE When importing sites using the Import-SPWeb cmdlet, the URL you specify needs to
be a site based on the same template type as the one you exported. If the site does not exist or if it
uses a different template, the import will not work.

When importing lists and libraries, the Import-SPWeb cmdlet creates a new version
of each item by default. Suppose that we have a list with thousands of items, and
we’ve accidentally deleted five items that we want to restore. To address this problem,

326 PowerShel l for Microsoft SharePoint 2010 Administrators

the Import-SPWeb cmdlet has an –UpdateVersions parameter, which we can set to
Ignore to import only items that do not exist in the list.

PS> Import-SPWeb http://nimaintra.net -Path e:\backup\Documents.cmp `

>> -IncludeUserSecurity -UpdateVersions Ignore

The other possible values for the –UpdateVersions parameter are Append and
Overwrite.

The Export-SPWeb cmdlet has quite a few other parameters. To display all the
available parameters, type the following:

PS > Get-Help Export-SPWeb -Parameter *

Restoring Data from an Unattached Content Database
Unattached content databases make it possible to connect content databases to a farm
without affecting any of the Web applications. To add a content database as unattached,
use the Get-SPContentDatabase cmdlet with the –ConnectAsUnattachedDatabase
switch.

PS> $contentDB = Get-SPContentDatabase -DatabaseServer SQLServer01 `

>> -DatabaseName NimaIntra_ContentDB_01_Backup `

>> -ConnectAsUnattachedDatabase

This example will store an instance of a SPContentDatabase object in the variable
contentDB, which will allow us to work with the content inside the corresponding
content database. The database could also be a snapshot, as discussed earlier in the
chapter.

Windows PowerShell does not include a cmdlet that exports sites, lists, or libraries
from an unattached content database or snapshot, but that does not make it impossible
to export such items. Here, we’ll go through the procedure, and then wrap it up in a
function.

First, we create an instance of an SPExport object.

PS > $spExport = New-Object Microsoft.SharePoint.Deployment.SPExport

The SPExportSettings class—an instance of which is the value of the SPExport
object’s Settings property—has a parameter called UnattachedContentDatabase,
which enables us to target our unattached content database or snapshot.

PS > $spExport.Settings.UnattachedContentDatabase = $contentDB

We must set the absolute URL of the site that we want to restore, so we first need to
find that information. We can retrieve a specific site collection stored in the unattached
content database using the Sites property.

PS > $spSite = $contentDB.Sites["/"]

327Chapter 21: Backup and Restore

Next, we use the AllWebs property to retrieve a specific site in the site collection
and use the site’s full URL as input to the SiteUrl parameter.

PS > $SPExport.Settings.SiteUrl= $spSite.AllWebs["/finance"].Url

We also set the file name and the location of the file, and choose to include the
security settings.

PS > $spExport.Settings.BaseFilename = "Finance.cab"

PS > $spExport.Settings.FileLocation = "e:\backup\"

PS > $spExport.Settings.IncludeSecurity = "All"

There are additional properties that you can set to manage the export settings.
To display all of the available properties, type the following:

PS > $spExport.Settings

Finally, we initiate the export operation using the Run() method.

PS > $spExport.Run()

This example generates a file containing a backup of the Finance site. We can import
the site using the Import-SPWeb cmdlet.

PS> Import-SPWeb http://nimaintra.net/finance -Path e:\backup\Finance.cab `

>> -IncludeUserSecurity -NoFileCompression

It is also possible to export subsites, lists, and even items. The following function
demonstrates how to export a single list from an unattached content database.

function Export-SPUnattachedList(

 [string]$contentDatabase,

 [string]$databaseServer,

 [string]$site,

 [string]$web,

 [string]$list,

 [string]$file,

 [switch]$showSite,

 [switch]$showWeb,

 [switch]$showList

) {

 $ContentDB = Get-SPContentDatabase -DatabaseServer $DatabaseServer `

 -DatabaseName $ContentDatabase -ConnectAsUnattachedDatabase

 if($showSite) {

 # Return site collections

 $contentDB.Sites |

 Select-Object -Property `

328 PowerShel l for Microsoft SharePoint 2010 Administrators

 @{Name="RelativeURL";Expression={([uri]$_.Url).AbsolutePath}}

 Break

 }

 # Get site collection

 $spSite = $contentDB.Sites[$site]

 if($showWeb) {

 # Return sites

 $spSite.AllWebs |

 Select-Object -Property `

 @{Name="RelativeURL";Expression={([uri]$_.Url).AbsolutePath}}

 Break

 }

 # Get site

 $spWeb = $spSite.OpenWeb($web)

 if($showList) {

 $spWeb.Lists |

 Select-Object -Property @{Name="List";Expression={$_.Title}}

 Break

 }

 # Check folder

 if(-not(Test-Path (Split-Path $file))) {

 New-Item -path (Split-Path $file) -type directory | Out-Null

 }

 # Check if file already exists

 if(Test-Path $file) {

 Write-Host "File $file already exists."

 Break

 }

 $spList = $spWeb.Lists[$list]

 $spExportObject = New-Object Microsoft.SharePoint.Deployment.SPExportObject

 $spExportObject.ID = $SPList.ID

 $spExportObject.Type = "List"

 $spExport = New-Object Microsoft.SharePoint.Deployment.SPExport

 # Add content database

 $spExport.Settings.UnattachedContentDatabase = $ContentDB

 # Add object type

 $spExport.Settings.ExportObjects.Add($spExportObject)

 # Add site collection URL

 $spExport.Settings.SiteUrl= $spSite.URL

 # Set additional properties

 $spExport.Settings.BaseFilename = (Split-Path $file -Leaf)

 $spExport.Settings.FileLocation = (Split-Path $file)

 $spExport.Settings.LogFilePath = ($file -Replace "\..*","-log.txt")

 $spExport.Settings.IncludeSecurity = "All"

329Chapter 21: Backup and Restore

 $spExport.Settings.IncludeVersions = "All"

 # Initiate export operation

 $spExport.Run()

 # Dispose objects

 $spWeb.Dispose()

 $spSite.Dispose()

 $spExport.Dispose()

}

You can run the function by typing the following:

PS > Export-SPUnattachedList -contentDatabase NimaIntra_ContentDB_01_Backup `

>> -databaseServer SQLServer01 -site "/" -web /finance `

>> -list Announcements -file C:\Backup\finance.cab

If you are uncertain of the site collections available, you can use the showSite
switch parameter:

PS > Export-SPUnattachedList -contentDatabase NimaIntra_ContentDB_01_Backup `

>> -databaseServer SQLServer01 -showSite

If you know the site collection but want to find out which sites and subsites are
available in the unattached content database, use the showWeb switch parameter.

PS > Export-SPUnattachedList -contentDatabase NimaIntra_ContentDB_01_Backup `

>> -databaseServer SQLServer01 -site "/" -showWeb

Finally, if you want to find out which lists are available on a site stored in an
unattached content database, you can use the showList switch parameter.

PS > Export-SPUnattachedList -contentDatabase NimaIntra_ContentDB_01_Backup `

>> -databaseServer SQLServer01 -site "/" -web /finance -showList

NOTE Backup and restore operations might affect the performance of your SharePoint 2010
environment. It is recommended that you perform them outside business hours.

Additional Functionality in SharePoint 2010
The options to manage backup and restore from Central Administration have been
significantly improved in SharePoint 2010. The granular backup has its own category in
the Central Administration site, and from there it is possible to not only to export sites
or lists, but also to recover data from unattached content databases. From the graphical
user interface, you are able to browse down to the list level of an unattached content
database and export it to a file share, as shown in Figure 21-1. However, importing the

330 PowerShel l for Microsoft SharePoint 2010 Administrators

exported content is not possible from the graphical user interface—that needs to be
done using Windows PowerShell.

You can both back up and restore content from the Central Administration site. As
shown in Figure 21-2, you can select exactly what you want to back up from a tree view.
However, it is still not possible to schedule backups from the Central Administration.

Figure 21-1. Recovering data from an unattached content database in Central Administration

331Chapter 21: Backup and Restore

Summary
Backup and restore functions have been improved on all levels in SharePoint 2010.
In this chapter, we looked at the various cmdlets available for performing backup
and restore operations at the farm, Web application, and site collection level. The
Backup-SPConfigurationDatabase cmdlet makes it possible to back up the farm’s
configuration settings and restore them either to the same farm or use them as a
template for provisioning new farms.

We also covered how to use Windows PowerShell to connect an unattached content
database, and then export sites and lists and restore them using the granular restore
options available in SharePoint 2010.

Figure 21-2. Backing up content from Central Administration

This page intentionally left blank

333

* (asterisk), 55, 61, 74
` (backtick character), 130
[] (brackets), 90
() parentheses, 56, 92
^ (caret) character, 115
, (comma operator), 119, 122
. (dot-sourcing operator), 120
.. (range operator), 119
:: (static member operator), 120–121
! operator, 116
& operator, 119, 120
* operator, 108, 109–110
*= operator, 110, 111
+ operator, 108
++ operator, 110, 111
+= operator, 110, 111
- operator, 108, 109
-- operator, 110, 111
-= operator, 110, 111
/ operator, 108, 110
> operator, 117
>> operator, 117
= (equal) operator, 88, 110, 111
% (modulus) operator, 108, 110
$() (subexpression operator), 119, 121
@() (array subexpression operator), 119, 122
$$ variable, 96

$? variable, 96
$^ variable, 96
$_ variable, 67, 96, 98, 132, 133, 134

A
AbsoluteURI property, 142
access control lists, 85
Access services, 6
accounts. See also user accounts

managed, 16, 42–43, 166–167
service, 41–43

Active Directory groups, 27
Active Directory service, 91, 169, 303
Add method, 217, 223, 228, 229, 296–297
AddDays method, 196
AddItem method, 227, 234
AddLookup method, 226
Add-Member cmdlet, 184
Add-PSSnapin cmdlet, 54, 150
Add-SPShellAdmin cmdlet, 72
Add-SPSolution cmdlet, 173
administration. See also Central Administration

correlation IDs, 38
flexible deployments, 15–17

Index

334 PowerShel l for Microsoft SharePoint 2010 Administrators

administration (continued)
improvements for, 15–19
STSADM tool, 43–44
unified infrastructure, 18–19

administrators. See also managing SharePoint
e-mail addresses for, 197, 198–199
increasing productivity for, 17–18
running PowerShell as, 50
for service applications, 36
site collection, 24, 25–26, 302

ADODB.Connection object, 182
[adsi] type accelerator, 91
AJAX, 5
aliases, 59–61
All parameter, 158
AllSigned execution policy, 143
ALTER DATABASE statement, 312, 313
–and operator, 115–116
anonymous access, 78–79
application data, 19, 36, 158, 160, 282
Application Discovery and Load Balancing

Service Application, 289–290
application pools

creating, 80, 283
overview, 22, 283
removing, 287
sharing, 283
specifying, 36, 37, 80

ApplicationPool parameter, 80
applications. See service applications;

web applications
$args variable, 96
arguments, 120, 140–142, 266
arithmetic operators, 108–110
array subexpression operator (@()), 119, 122
[array] type accelerator, 91
arrays, 101–105, 122, 188
-as operator, 118
assignment levels, 136–137
assignment operators, 90, 110–111
associated groups, 303
asterisk (*), 55, 61, 74
authentication

claims-based, 19, 168, 289, 297
forms-based, 79, 166, 168, 169, 178–179
remote sessions, 149
Windows, 297

automatic variables, 96–98
automating installation, 159–161
AutoSPInstaller, 161

B
backtick character (`), 130
backups. See also restoring data

displaying GUID, 324

farm data, 41, 322–324
history, 324
location of, 324
new features, 17, 40–41, 329–331
overview, 322–324
site collections, 82, 325
sites, 325

Backup-SPFarm cmdlet, 322, 323
Backup-SPSite cmdlet, 82
.bak files, 40
batch files, 163
BDC (Business Data Catalog), 14
Begin parameter, 133, 134
Best Practices Analyzer, 17
BI (Business Intelligence), 13
binary large objects. See BLOBs
BLOB data, 308
BLOB stores, 316, 317–319
BLOBs (binary large objects), 24, 308, 315–319
[bool] type accelerator, 91
Boolean false, 96
brackets [], 90
branching logic, 126
Business Connectivity Services, 13, 14, 45
Business Data Catalog (BDC), 14
Business Intelligence (BI), 13
[byte] type accelerator, 91

C
call operator (&), 119, 120
CAML (Collaborative Application Markup

Language), 188, 228
CAML queries, 188, 228–230, 240–242
CAML strings, 243
caret (^) character, 115
CAS (Code Access Security) policy, 174
Catch block, 262, 263
Central Administration, 32–43

backup and restore, 40–41
considerations, 17, 32–33
Farm Configuration Wizard, 41–42
health and monitoring, 36–40
managed accounts, 42–43
new features, 32–33
publishing service applications, 292–293
service application management, 35–36
web application management, 33–35

Certificate parameter, 288
[char] type accelerator, 91
Check Permissions tool, 27
CheckIn method, 261–266
checking in files, 261–266
checking out files, 259–261, 277–278
CheckOut method, 259–261
CheckOutType property, 259

335Index

Check-Url function, 142
Choice type field, 225–226
claims-based authentication, 19, 168, 289, 297
classes, 94, 205, 235
Clear-Variable cmdlet, 89
–clike operator, 114
Close method, 184
cmdlets. See also specific cmdlets

aliases, 59–61
built-in, 53
combining, 63, 65–69
custom, 53–54
examples, 57
getting help for, 57–59, 60
guidelines for, 53
help topics, 145–146
loading all, 50
managing solution packages with, 173–175
naming, 53
parameters for, 61–65
PowerShell, 18, 54
running remotely, 149, 150–151
sending output to files, 117
SharePoint, 53–65

.cmp files, 40
Code Access Security (CAS) policy, 174
collaboration, 4, 8, 166
Collaborative Application Markup Language.

See CAML
columns, 186–187, 216, 231
comma operator (,), 119, 122
command batch files, 163
command parameter, 311
CommandType parameter, 55
comma-separated files, 185
Comment field, 187, 188–189
comment-based help topics, 145–146
comments, 144–146, 187–191, 261–265
Community capability area, 131–133
comparison operators, 112–115, 197
Composites capability area, 14
compression, 324–325
conditional statements, 126–129, 137
configuration database, 156–161, 322
configuration wizard, 162–163
confirm parameter, 161
$ConfirmPreference variable, 99
Connection object, 183
connection strings, 312
connectionString parameter, 311, 312
$ConsoleFileName variable, 96
consumer farms, 287–291
contact information, 197–199
contacts list, 216–217
ContainsCasPolicy property, 174
content

appending to files, 117
collaboration, 8

managing, 11
metadata. See metadata
offline use of, 112–113
overview, 9–11
repositories, 9–10
rich media, 11

content approval, 272–273
Content capability area, 9–11
content databases, 307–320

access settings, 312
attaching, 75–76
changing properties, 75
configuring, 75, 316–317
considerations, 308
creating, 23, 24, 76
detaching, 75–76, 311
displaying information about, 308–309
managing, 73–77
name management, 80, 308–315, 320
new features, 320
overview, 23–24, 308
reattaching, 313
removing, 77
renaming, 311–313, 315, 320
retrieving, 72, 73–74, 309
snapshots, 324
specifying for site collections, 82
storing information, 308–311
taking online/offline, 75
unattached, 17, 40, 322, 326–330

content type hub, 286
content types, 231, 266–269
ContentDatabase parameter, 64, 82
ConvertTo-Html cmdlet, 199
ConvertTo-SecureString cmdlet, 157
Copy-SPDocumentLibrary function, 257–258
Copy-SPListItem function, 247–248
correlation IDs, 38
Count property, 56, 67, 102, 130
Credential Security Support Provider

(CredSSP), 149
credentials, 149, 157
CredSSP (Credential Security Support

Provider), 149
cultures, user interface, 97
Currency type field, 236

D
data

application, 19, 36, 158, 160, 282
backing up. See backups
BLOB, 308
read-only, 17
restoring. See restoring data
service application, 19
shared, 158

336 PowerShel l for Microsoft SharePoint 2010 Administrators

data connections, 7, 14
data types, 90–92
DatabaseName parameter, 80
databases

configuration, 156–161, 322
content. See content databases
naming, 156–157
schemas, 17

Datasheet view, 248
DateTime object, 196
DateTime type field, 236
debugging environment, 97
debugging messages, 97
$DebugPreference variable, 99
decimal numbers, 91
[decimal] type accelerator, 91
Default clause, 128
DefaultTimeZone parameter, 79
DefaultValue property, 225
Delete method, 221–222, 230–231, 242–243
DeleteIISSite switch parameter, 80
deployments, 15–17, 19, 173–179
Description property, 299
Developer Dashboard, 18
diagnostics logging, 37, 39
Directory parameter, 323, 324
disaster recovery plans, 15
disasters, 15
Disconnect-SPConfigurationDatabase

cmdlet, 161
Dismount-SPContentDatabase cmdlet, 76
Dispose() method, 135–136, 137, 205
disposition approval workflow, 202
do until loop, 184
DocAve Extender, 316
document IDs, 10
document libraries, 251–269

copying documents between, 256–258
creating, 252–254
creating folders in, 253
managing content types, 231, 266–269
new features, 268–269
removing, 254
uploading/managing files, 254–256
versioning, 271–279

documents. See also files
content types, 231, 266–267
copying between libraries, 256–258
expiration policies, 201
versions, 271–279

.docx extension, 255–256
dot notation, 103
dot-sourcing operator (.), 120
double hop, 149
[double] type accelerator, 91

do/while loop, 130–131
draft item security, 275–276

E
ECM (Enterprise Content Management), 9
EditFormat property, 225
elseif keyword, 126–127
e-mail

converting to HTML, 199
sending, 199–201

e-mail addresses
configuring for web applications, 78–79
site administrator, 197, 198–199

Enable() method, 319
enableMinor switch parameter, 275
Enable-PSRemoting cmdlet, 148–151
–Encoding parameter, 288
encryption key, 157
End parameter, 133, 134
EngineIntrinsics object, 96
EnsureUser method, 297
Enterprise Content Management (ECM), 9
Enter-PSSession cmdlet, 149, 151
environment variables, 100–101
eq operator, 127
equal operator (=), 88, 110, 111
error objects, 96
$Error variable, 96
$ErrorActionPreference variable, 99
errors

appending to files, 117
correlation IDs, 38
invalid URLs, 147
redirecting, 117

$ErrorView variable, 99
event log flood protection, 37
$Event variable, 96
$EventSubscriber variable, 96
Examples parameter, 57
Excel Services, 13, 21
Excel spreadsheets

names, 183
retrieving values from, 183–184
returning rows as objects, 184–185
site collections based on, 182–186
working with, 182–185

ExecuteNonQuery() method, 312, 313
ExecuteReader() method, 312
execution policies, 143–144
$ExecutionContext variable, 96
expiration policies, 201
Export method, 288

337Index

Export-Csv cmdlet, 185
exporting

items, 84–85, 324–326
lists, 84–85, 324–326
sites, 84–85, 191, 324–326
subsites, 84–85

Export-SPWeb cmdlet, 84–85, 324–325, 326
expressions

evaluating, 115–116
regular, 112, 114, 115, 128, 188

Extranet solution, 166–173
extranet zones, 166–173

F
-f (format operator), 121
$false variable, 96
Farm Configuration Wizard, 41–42
farm encryption key, 157
farm password, 157
FarmCredentials parameter, 157
farms

attaching content databases, 75–76
backing up data, 41, 322–324
connecting/disconnecting servers, 161, 162
consumer, 287–291
detaching content databases, 75–76
monitoring, 17
overview, 21
patch level, 16–17
publishing, 287–289, 291
restoring data, 322–324
root certificates, 287–288
shared services, 19
sharing service applications

between, 287–291
feedback, 8
fields

choice fields, 225–226
comment, 187
displaying, 222
hiding, 187, 224
hyperlink, 238
lookup, 35, 226–227
managing, 222–227
numeric, 236
uses for, 222

filename profile scripts, 147–148
files. See also documents

appending content to, 117
.bak, 40
batch, 163
checking in, 261–266

checking out, 259–261, 277–278
.cmp, 40
comma-separated, 185
formatting, 62–63
Help, 158
Internet, 143
local, 143
log, 17
managing, 254–256
PNG, 13
sending output to, 117
uploading, 254–256
video, 11
.wsp, 45
XML, 62, 312, 313–315

FILESTREAM provider, 308, 316, 320
Finally block, 262, 263
First parameter, 66
[float] type accelerator, 91
floating numbers, 91
flow control

conditional statements, 126–129
ForEach-Object cmdlet, 132–134
looping statements, 129–131
Where-Object cmdlet, 134–135

folders
considerations, 256–257
creating in document libraries, 253
GetFolder method, 254, 257
web application, 158

folksonomies, 10
for loop, 129–130, 310
Force switch parameter, 325
foreach command, 133
foreach construct, 132
foreach loop, 131, 137, 227–228
$foreach variable, 96
ForEach-Object cmdlet, 132–134, 137,

184–186, 197
Format() method, 121
format operator (-f), 121, 310
$FormatEnumerationLimit variable, 99
Format-List cmdlet, 63, 74, 94, 205, 259
formatting files, 62–63
forms-based authentication, 79, 166, 168, 169,

178–179
FullName property, 92
function keyword, 140
functions. See also specific functions

arguments, 120, 140–142, 266
calling, 141, 142
described, 140
example of, 140
input/output, 140
parameters, 140–141

338 PowerShel l for Microsoft SharePoint 2010 Administrators

functions (continued)
PowerShell, 140–142
in scripts, 146–147
working with, 140–142

G
GAC (Global Assembly Cache), 174
-ge (greater than or equal to) operator, 112, 113
Get-Alias cmdlet, 59–60, 61
Get-ChildItem cmdlet, 59, 98, 100–101, 254
Get-Command cmdlet, 55, 56–57, 73, 77
Get-Credential cmdlet, 157
Get-Date cmdlet, 196
Get-Excel function, 184–185
Get-ExecutionPolicy cmdlet, 143–144
GetField method, 223, 225
GetFile method, 246
GetFolder method, 254
Get-Help cmdlet, 57–59, 60, 146
GetItemById method, 237, 239–240, 242
GetItems method, 239, 240, 242, 245
GetList method, 186–187, 219
Get-Member cmdlet, 92, 93, 120, 222, 224
GetNames static method, 218
GetProviderNames() method, 319
Get-PSSnapin cmdlet, 54, 151
Get-SPBackupHistory cmdlet, 324
Get-SPContentDatabase cmdlet, 72, 73–74, 76
Get-SPFarm cmdlet, 161
Get-SPGroup function, 298
Get-SPList function, 219–220, 238, 252
Get-SPListItem function, 241, 242, 243
Get-SPManagedAccount cmdlet, 166
Get-SPSite cmdlet, 64, 65–66, 130
Get-SPSite is Filter parameter, 64–65
Get-SPSiteAdministration cmdlet, 113, 126
Get-SPSolution cmdlet, 173–174
Get-SPSolution command, 173
Get-SPUser cmdlet, 188, 238, 297, 302
Get-SPWeb cmdlet, 65–66, 147, 196, 204
Get-SPWebApplication cmdlet, 78, 169, 323
Get-SPWebTemplate cmdlet, 68, 82, 102
GetType() method, 90
Get-Variable cmdlet, 89, 98
GetViewFromUrl method, 227, 228
Global Assembly Cache (GAC), 174
globally unique identifier (GUID), 42, 62, 64, 290
GradualDelete switch parameter, 83
GradualDeleteConfConfirm switch

parameter, 83
Groove product. See SharePoint Workspace
Group parameter, 302–303

groups, 296–301
Active Directory, 27
adding to site collections, 297–298
adding users to, 302–303
associated, 303
considerations, 296
creating, 296–298
modifying, 298–300
new features, 303–306
permissions, 26–27
proxy, 36, 167–168, 284, 292
removing, 300–301
removing users from, 303, 305
renaming, 298
retrieving, 296
SharePoint, 27

Groups properties, 67, 296
-gt (greater than) operator, 112, 113
GUID (globally unique identifier), 42, 62, 64, 290

H
hardware requirements, 19–20
hash tables, 97, 103–105, 197
[hashtable] type accelerator, 91
Health Analyzer, 36, 38
Health Analyzer report, 37
health and monitoring, 36–40
health rules, 36
help

Get-Help cmdlet, 57–59, 60, 146
obtaining, 57–59, 60

Help files, 158
help topics, 59, 60, 145–146
here-strings, 236, 309, 310
home directory, 96
$Home variable, 96
$Host variable, 97
HTML (HyperText Markup Language), 199–201
HTTP request monitoring, 35
hyperlinks, 238
HyperText Markup Language (HTML), 199–201

I
–Identity parameter, 62, 66, 78, 173, 303
if statement, 127
if/elseif/else statement, 126–127
IIS (Internet Information Services), 22
IIS application pools, 283
IIS websites, 80

339Index

Import-Csv cmdlet, 185
importing

items, 85–86, 324–326
lists, 85–86, 324–326
sites, 85–86, 191, 324–326
subsites, 85–86

Import-SPWeb cmdlet, 85–86, 325–326, 327
IncludeCentralAdministration

parameter, 78
IncludeUserSecurity switch parameter, 85
IncludeVersions parameter, 85
indexed classes, 235
information management policies, 201–202
InnerXml property, 310
$input variable, 97
Insights capability area, 13
installation

automating, 159–161
options for, 15
prerequisites installer, 15
scripted, 155–163
test environment, 156

Installed() method, 319
Install-SPApplicationContent cmdlet,

158–159
Install-SPFeature cmdlet, 158
Install-SPService cmdlet, 158
Install-SPSolution cmdlet, 173
[int] type accelerator, 91
Internet files, 143
Internet Information Services. See IIS
Invalid URL error, 147
Invoke-Command cmdlet, 150
-is operator, 118
IsCatalog property, 253
IsExternal switch, 211
-isnot operator, 118
IsNullOrEmpty method, 197
IsRootWeb property, 95
Item parameter, 323
Item property, 235, 255
items, 233–249

adding attachments to, 246
copying, 245–248
creating, 234–239
deleting, 242–245
expiration policies, 201
exporting, 84–85, 324–326
importing, 85–86, 324–326
large number of, 28
new features, 248
order, 228
overview, 28, 234
searching for, 240–242
sharing. See sharing

site collections based on list items,
186–191

title, 240
updating, 239–242, 248
updating status, 188

Items property, 188
ItemUrl parameter, 84

K
key/value pairs, 104, 105
keywords, 29
Knowledge Mining feature, 29

L
language support, 5
Last parameter, 67
$LastExitCode variable, 97
LastItemModifiedDate property, 135, 196
-le (less than or equal to) operator, 112, 113
Len function, 52
Length property, 102
libraries. See also document libraries

default view, 34
MSDN, 94
new features, 9–11
overview, 27–28

–like operator, 65, 112, 113
Limit parameter, 64
line-of-business data connections, 14
list items. See items
list queries, 35
list repositories, 9–10
lists, 215–232

access control, 85
adding to Quick Launch bar, 220–221
binding to, 186–187
columns, 231
contacts, 216–217
controlling, 34
creating custom list, 217–219
creating new list, 216–217
default view, 34
deleting, 85, 221–222
exporting, 84–85, 324–326
fields in. See fields
getting list instances, 219–220
importing, 85–86, 324–326
language support, 5
large, 28, 33–35, 188

340 PowerShel l for Microsoft SharePoint 2010 Administrators

lists (continued)
new features, 9–11, 231–232
order, 228
overview, 27–28, 216
performance and, 28, 33–35, 188
permissions, 35
queries on, 34–35
restrictions on, 34
site collections based on list items,

186–191
templates, 216–217, 231, 232
views. See views
working with, 186–188

ListTemplates property, 216–217
local files, 143
log files, 17
$LogCommandHealthEvent variable, 99
$LogCommandLifeCycleEvent variable, 99
$LogEngineHealthEvent variable, 99
$LogEngineLifeCycleEvent variable, 99
logging categories, 37
logical operators, 115–116
logo, changing, 207–208
$LogProviderHealthEvent variable, 99
$LogProviderLifeCycleEvent variable, 99
logs/logging

diagnostics logging, 37, 39
event log flood protection, 37
trace log files, 37, 38
trace logging feature, 39
ULSViewer tool, 39

[long] type accelerator, 91
Lookup field type, 237
lookup fields, 35, 226–227
looping statements, 126, 129–131, 137
loops

do until, 184
do/while, 130–131
for, 129–130, 310
foreach, 131, 137, 227–228
while, 130–131

-lt operator, 112, 113

M
Mail-SiteOwner script, 199–201
maintenance costs, 4
Manage Access Requests dialog box, 197
Manage Service Applications page, 35–36
managed accounts, 16, 42–43, 166–167
managing SharePoint, 31–45. See also

administration
Central Administration, 32–43
content databases, 73–77

permissions, 72
with PowerShell, 71–86
service applications, 35–36
site collections, 81–83
STSADM tool, 43–44
subsites, 83–86
web applications, 33–35, 77–80

master key, 157
-match operator, 65, 112, 114
$Matches variable, 97
$MaximumAliasCount variable, 99
$MaximumErrorCount variable, 99
$MaximumFunctionCount variable, 99
$MaximumHistoryCount variable, 99
$MaximumVariableCount variable, 99
MaxSiteCount parameter, 75
Measure-Object cmdlet, 56, 68
memory

object disposal and, 135
remote shells, 149

memory leaks, 54
memory limits, 149
metadata, 10–11, 282–284
metadata service application proxy, 286, 287,

290, 291
metadata tagging, 10
metadata-driven navigation, 9–10
methods. See also specific methods

considerations, 52
static, 120–121, 197, 198
in variables, 92–96

Microsoft Groove product. See SharePoint
Workspace

Microsoft TechNet, 21
Microsoft Visio, 45
Microsoft Visual Studio, 45
modulus (%) operator, 108, 110
Monitoring section, 36–40
Mount-SPContentDatabase cmdlet, 76, 313
MoveFirst method, 183
MoveNext method, 184
MSDN library, 94
multilingual support, 5
multi-tenancy, 19
My Site feature, 9, 28–29
$MyInvocation variable, 97

N
Name parameter, 76, 79, 288
navigation

managing, 209–212
metadata-driven, 9–10
modifying, 213–214

341Index

Quick Launch, 209–211
top, 211–212
tree view, 135–136, 209

-ne (not equal to) operator, 112, 113
$NestedPromptLevel variable, 97
.NET Framework, 51
.NET objects, 62, 92
NewName property, 310
New-Object cmdlet, 182, 266
New-PSSession cmdlet, 150
news feeds, 9
New-SPAuthenticationProvider cmdlet, 168
New-SPCentralAdministration cmdlet, 158
New-SPConfigurationDatabase cmdlet, 158
New-SPContentDatabase cmdlet, 76
New-SPGroup function, 297–298
New-SPListItem function, 238
New-SPManagedAccount cmdlet, 166–167
New-SPServiceApplicationPool cmdlet, 283
New-SPSite cmdlet, 82, 185, 186, 188
New-SPUser cmdlet, 297, 301–302
New-SPView function, 230
New-SPWeb cmdlet, 83–84
New-SPWebApplication cmdlet, 80, 168
New-SPWebApplicationExtension

cmdlet, 168
New-Variable cmdlet, 88
NoSiteLock switch parameter, 82
–not operator, 116, 173
Notepad, 142
Notes property, 299
–notlike operator, 112, 113, 114
–notmatch operator, 112, 114
NTFS file system compression, 38
$NULL variable, 97
Number type field, 236

O
object disposal, 135–137
objects

assignment levels, 136–137
changing types, 118
error, 96
measuring, 67–68
.NET, 62, 92
overview, 52–53
retrieving members, 92
storing in PowerShell, 69

Office Web Applications, 6
$OFS variable, 99
OnQuickLaunch property, 219, 220
Open method, 183, 312
OpenRead method, 254

operators, 107–123. See also specific operators
arithmetic, 108–110
assignment, 110–111
comparison, 112–115, 197
logical, 115–116
redirection, 117
special, 119–122
type, 118

–or operator, 116
OutboundMailSenderAddress property, 199
OutboundMailServiceInstance property, 199
$OutputEncoding variable, 100
overwrite switch parameter, 256, 258
OwnerAlias parameter, 82

P
param statement, 145, 147
Parameter parameter, 61
parameters. See also specific parameters

active, 97
for cmdlets, 61–65
in functions, 140–141
named, 141, 142
in scripts, 145, 147
switch, 141–142

parentheses (), 56, 92
partitioning, 22
passphrase, 157, 162
Passphrase dialog box, 162
Passphrase parameter, 157
passwords, 157, 166–167
patching process, 16–17
path profile scripts, 147–148
pattern matching, 114–115, 128
people picker, 81
People Search function, 12–13
performance

controlling, 19
large lists, 28, 33–35, 188
large number of items and, 28, 33–35

PerformancePoint Services, 13
permissions

checking, 27
groups, 26–27
lists, 35
managing, 72
service applications, 285–286, 291
SharePoint, 72
site collections, 191
sites, 26–27, 296, 303
users, 26–27, 301, 302, 303

PI property, 121
PID (process identifier), 97

342 PowerShel l for Microsoft SharePoint 2010 Administrators

$PID variable, 97
pipelines, 54, 65–69, 132, 134, 135
PNG files, 13
POC (proof-of-concept) environment, 156
Port parameter, 79
Pow() method, 121
PowerShell

advantages of, 51–52
basics, 51–53
connecting/disconnecting servers, 161
formatting files, 62–63
getting started with, 49–69
managing SharePoint with, 71–86
pipelines, 65–69
running as administrator, 50
running remotely, 148–151
scripted installation, 155–163
security features, 142
standard vs. ISE, 50
starting up, 50–51

PowerShell cmdlets, 18, 54. See also cmdlets
PowerShell console, 50, 54
PowerShell functions, 140–142
PowerShell remoting, 148–151
PowerShell scripts, 143–148, 159–161
.pptx extension, 255–256
preference variables, 98–100
prerequisites installer, 15
preupgradecheck tool, 15
process identifier (PID), 97
Process parameter, 133, 134
ProcessBatchData method, 243
productivity, increasing, 17–18
profile scripts, 147–148
$Profile variable, 97
$ProgressPreference variable, 100
proof-of-concept (POC) environment, 156
properties. See also specific properties

constructed, 66, 67
hash table, 197
static, 120–121, 198
in variables, 92–96

Provision parameter, 158
proxies, service application, 36, 167–168, 284,

286–291
proxy groups, 36, 167–168, 284, 292
.ps1 extension, 142
$PSBoundParameters variable, 97
$PsCmdlet variable, 97
Psconfig.exe, 163
PSCredential object, 157, 166
$PsCulture variable, 97
$PsDebugContext variable, 97
$PSEmailServer variable, 100
PSEventArgs object, 96
PSEventSubscriber object, 96

$PsHome variable, 97
$PsScriptRoot variable, 97
$PSSessionApplicationName variable, 100
$PSSessionConfigurationName variable, 100
$PSSessionOption variable, 100
$PsUICulture variable, 97
$PsVersionTable variable, 97
publishing farms, 287–289, 291
publishing service applications, 22, 287, 290–293
$Pwd variable, 97

Q
queries

CAML, 188, 228–230, 240–242
lists, 34–35
lookup fields, 35
search, 12
SQL, 249

Query property, 228
Quick Launch bar, 220–221
Quick Launch navigation, 209–211
QuickLaunchEnabled property, 209
quota settings, 149

R
range operator (..), 119
ratings, 11
RBS (Remote BLOB Storage), 24, 308, 315–319
RBS FILESTREAM provider, 308, 316, 320
RBS provider, 317–318
recovery time objective (RTO), 24
redirection operators, 117
registry key, 150
regular expressions, 112, 114, 115, 128, 188
Remote BLOB Storage. See RBS
remote cmdlets, 149, 150–151
remote operations, 148–151
remote sessions, 149–150
remote shells, 149
remote users, 148–151
RemoteSigned excecution policy, 143
Remove method, 300–301
RemoveContentDatabase switch parameter, 80
–RemoveData switch parameter, 287
Remove-SPContentDatabase cmdlet, 77
Remove-SPGroup function, 301
Remove-SPListItem function, 244
Remove-SPShellAdmin cmdlet, 72
Remove-SPSite cmdlet, 83
Remove-SPSolution cmdlet, 175

343Index

Remove-SPUser cmdlet, 303
Remove-SPView function, 231
Remove-SPWeb cmdlet, 86
Remove-SPWebApplication cmdlet, 80
Remove-Variable cmdlet, 89
Rename-SPContentDatabase.ps1 script, 313–315
Replace() method, 92–93, 115
-replace operator, 112, 115, 188, 325
reports

Health Analyzer, 37
status, 36
web analytics, 39, 40

repositories, list, 9–10
RequestAccessEmail property, 199
Require Check Out setting, 277–278
Resource Throttling settings, 34
resources, limits on, 14
Restart-SPAdminV4 function, 175
RestoreMethod parameter, 323
Restore-SPSite cmdlet, 82
restoring data. See also backups

farm data, 322–324
new features, 17, 40–41, 329–331
overview, 322–324
site collections, 82
from unattached content databases,

326–330
Restricted excecution policy, 143
Ribbon, 5, 33, 36, 178, 248
rich media content, 11
root certificates, 287–288
RowLimit property, 240–241
RTO (recovery time objective), 24
Run() method, 327
runspace, 54

S
sandboxed solutions, 14
Scheme property, 142
scopes, 81
script blocks, 120, 132, 133, 137
scripted installation, 155–163

alternatives to, 162–163
automating installation with, 159–161
connecting/disconnecting servers, 161, 162
with PowerShell, 156–159

scripted installations, 15
scripts

comment-based help topics in, 145–146
comments in, 144
creating, 144
executing, 144–145
extranet solution, 169–173

functions in, 146–147
parameters in, 145, 147
PowerShell, 143–148
profile, 147–148
psconfig.exe, 163
site collection creation, 189–191
site usage, 199–201
solution package updates, 175–178

Search capability area, 11–13
search queries, 12
Search tool, 11
searches

faceted, 12
for items, 240–242
new features, 11–13
outside SharePoint, 13
People Search function, 12–13

SecondaryOwnerAlias parameter, 81
secure strings, 157
SecureString cmdlets, 157
security

anonymous access and, 78–79
authentication. See authentication
draft items, 275–276
execution policies, 143–144
passwords, 157, 166–167
PowerShell, 142
remote sessions, 149
service applications, 289–290

Security Token Service (STS) certificates, 287, 289
Select-Object cmdlet, 66–68, 94–95, 197, 296
Self-Service Site Collection Management

feature, 191–193
Send-MailMessage cmdlet, 199
server farms. See farms
Server property, 199, 312
servers

connecting/disconnecting, 161, 162
naming, 157
patch level, 16–17
SharePoint Server, 4, 6, 13, 21
SMTP, 78, 79, 198–199
software requirements, 20
SQL Server, 20, 157, 311–320
virtual, 23

service accounts, 41–43
service application data, 19
service application proxies, 36, 167–168, 284,

286–291
service application resources, 19
service applications

administrators for, 36
application pools, 36, 37
changing properties, 36
configuring, 41–42, 284–286
considerations, 36

344 PowerShel l for Microsoft SharePoint 2010 Administrators

service applications (continued)
content type hub, 286
creating, 282–284
creating service pools for, 283
instances, 282–283, 284
isolating, 36
managing, 35–36, 284–286
naming standards, 42
new features, 292–293
overview, 22
permissions, 285–286, 291
publishing, 22, 287, 290–293
removing, 287
security, 289–290
sharing between farms, 287–291
sharing between web applications, 22, 36
working with, 282–287

service instances, 282–283, 284
service level agreement (SLA), 24
Set-Content cmdlet, 288
SetEnvironmentVariable() method, 101
Set-ExecutionPolicy cmdlet, 144
Set-FBAConfig.ps1 script, 169–173
Set-SPContentDatabase cmdlet, 75
Set-SPGroup function, 299–300
Set-SPListOnQuickLaunch function, 221
Set-SPSite cmdlet, 81
Set-SPUser cmdlet, 302
Set-SPWeb cmdlet, 84
Set-SPWebApplication cmdlet, 78–79, 169
Set-SQL function, 311, 313
Set-Variable cmdlet, 88
shared application data, 158
Shared Service architecture, 19
Shared Service Providers (SSPs), 44
shared services, 19
SharePoint 2010

additional functionality in, 268–269
administrator improvements, 15–19
architectural components, 21–29
capability areas, 4–14
formatting files, 62–63
managing. See managing SharePoint
managing with Windows PowerShell,

71–86
overview, 3–29
patching process, 16–17
permissions, 72
scripted installation, 155–163
system requirements, 19–20

SharePoint 2010 cmdlets, 53–65. See also cmdlets
SharePoint 2010 Management Shell, 50
SharePoint 2010 Products Configuration

Wizard, 162–163
SharePoint 2010 snap-in, 54
SharePoint Best Practices Analyzer, 17

SharePoint data. See data
SharePoint Designer

described, 14
new features, 44–45
obtaining, 45
restricting functions, 33
using workflows in, 45

SharePoint farms. See farms
SharePoint Foundation, 4
SharePoint groups, 27
SharePoint Health Analyzer, 36, 38
SharePoint lists. See lists
SharePoint Server, 4, 6, 13, 21
SharePoint Shell Access role, 72
SharePoint sites. See sites
SharePoint Workspace, 112–113
sharing service applications, 22, 36, 287–291
$ShellID variable, 97
shells profile scripts, 147–148
showSite switch parameter, 329
ShowTree parameter, 323
showWeb switch parameter, 329
Silverlight, 13
site administrators. See administrators
site collection administrator, 24, 25–26, 302
site collections, 181–193

adding groups to, 297–298
adding users to, 301–302
automating creation of, 191
backing up. See backups
based on Excel spreadsheets, 182–186
based on SharePoint list items, 186–191
configuring, 81
considerations, 182
creating, 25, 82, 182, 185–186, 191
filtering, 64–65
GUIDs for, 62
iterating through, 137
limiting, 64
listing, 64
managing, 81–83
maximum number of, 75
names, 191
overview, 25–26
owner of, 81
permissions, 191
removing, 83, 86
restoring, 82
retrieving, 64
retrieving sites from, 69
sharing items, 25
size, 137
specifying content databases

for, 82
templates, 82
URLs for, 62

345Index

Site parameter, 73
site subscriptions, 36
site usage script, 199–201
Site Use Confirmation and Deletion feature,

192–193
SiteGroups property, 296
sites. See also subsites

adding users to, 297
backing up. See backups
contact information, 197–199
creating, 26, 51–52
description, 208–209
exporting, 84–85, 191, 324–326
importing, 85–86, 191, 324–326
linking to external URLs, 209
linking to internal URLs, 211
logo, 207–208
managing, 195–202
new features, 212–214
overview, 26–29
permissions, 26–27, 296, 303
removing, 86, 192
removing users from, 303, 305
retrieving from site collections, 69
team, 51–52
templates, 26
themes, 204–207, 212, 213
title, 208–209
validating usage, 196–197

Sites capability area, 91–93
SiteUsers properties, 67
SLA (service level agreement), 24
SMTP servers, 78, 79, 198–199
snap-ins, 53–54, 150–151
snapshots, database, 324
social networking, 8
social networks

keeping track of, 9
My Site feature, 9, 28–29
People Search function, 12–13

social tagging, 10
solution packages, 166, 173–178
Sort-Object cmdlet, 69
$SourceArgs variable, 97
$SourceEventArgs variable, 97
SPAssignment cmdlet, 136–137
SPConfigurationDatabase cmdlet,

156–158, 161
SPContentDatabase class, 74
special operators, 119–122
SPField object, 187
SPList object, 188
spListCollection variable, 217
SPModule, 161
spreadsheets. See Excel spreadsheets
SPWeb class, 196

SPWeb object, 197
SPWebApplication cmdlet, 79
SPWebPipeBind parameter, 66
SQL queries, 249
SQL Server, 20, 157, 311–320
Sqrt() method, 121
SSPs (Shared Service Providers), 44
Start-SPAdminJob cmdlet, 175
Start-SPAssignment cmdlet, 135, 136–137
static member operator (::), 120–121
static methods, 120–121, 197, 198
static properties, 120–121, 198
Static switch parameter, 120
Status field, 187
-Status parameter, 75
status reports, 36
Stop-SPAssignment cmdlet, 135, 136–137
[string] type accelerator, 91
strings

arithmetic operations, 108–110
case, 53, 92
finding/replacing values, 115
here-strings, 236
length, 52
secure, 157

STS (Security Token Service) certificates, 287, 289
STSADM tool, 43–44
subexpression operator ($()), 119, 121
subsites, 66, 83–86. See also sites
substrings, 115
switch keyword, 127
switch parameters, 141–142
switch statement, 127–128
system requirements, 19–20
System.String value, 92, 109

T
tags/tagging, 29
taxonomy structures, 10
TCO (total cost of ownership), 4, 315
team sites, 51–52
TechNet, 161
Template parameter, 82, 219
templates

lists, 216–217, 231, 232
site collections, 82
sites, 26
subsites, 84
web, 68

test environment, 156
Test-Path cmdlet, 150
themes, 204–207, 212, 213
$This variable, 97

346 PowerShel l for Microsoft SharePoint 2010 Administrators

.thmx files, 204, 212
ThreadOptions property, 54
threads, 54
throttling, 19, 34, 35
thumbnails, 11
time zones, 79
timer jobs, 19, 35, 175, 268
Topology Service Application, 290
total cost of ownership (TCO), 4, 315
trace log files, 37, 38
trace logging feature, 39
Transact-SQL, 312–313, 316, 317
tree view, 135–136, 209
TreeViewEnabled property, 135–136
troubleshooting

correlation IDs, 38
resolving problems, 36
status reports, 36
ULSViewer tool, 39

$True variable, 97
true/false values

comparison operators, 112–115
logical operators, 115–116

trusted root authority, 288
Try block, 262, 263
type accelerators, 91–92
type operators, 118
type shortcuts, 91–92

U
ULS (Unified Logging Service), 17
ULSViewer tool, 39
unattached content databases, 17, 40, 322,

326–330
Unicode characters, 91
unified infrastructure, 18–19
Unified Logging Service (ULS), 17
uniform resource indicators (URIs), 90, 142, 290
uniform resource locators. See URLs
Uninstall-SPSolution cmdlet, 175
Unrestricted excecution policy, 143
Update method, 136, 188, 224, 255
Update-SPSolution cmdlet, 174–175
–UpdateVersions parameter, 86, 325–326
upgrades

backward-compatibility mode, 17
preupgradecheck tool, 15
visual, 15–16

upgradesolution operation, 174
Upload-SPFile function, 254–256
URIs (uniform resource indicators), 90, 142, 290
Url parameter, 82
UrlPrefix property, 246

URLs (uniform resource locators)
checking, 142
data type values, 90
external, 209
finding site documents with, 10
internal, 211
invalid, 147
linking to, 209, 211
for site collections, 62
subsites, 66
web applications, 82

Usage and Health Data Collection service
application, 38–40

UseNewThread option, 54
user accounts

managing, 296
retrieving as field values, 238
scopes for, 81

user interface, 5. See also Ribbon
user interface culture, 97
user profile scripts, 147–148
user profiles, 9, 304–305, 306
UserAcountDirectoryPath parameter, 81
usernames, 157
users, 301–303

adding to groups, 302–303
adding to SharePoint Shell Access role, 72
adding to site collections, 301–302
adding to sites, 297
calculating number of, 67
considerations, 296
deleting user profiles, 304–305, 306
finding, 81
home directory, 96
modifying, 302–303
new features, 303–306
permissions, 26–27, 301, 302, 303
remote, 148–151
removing from groups/sites, 303, 305
removing from SharePoint, 305
removing from SharePoint Shell Access

role, 72
renaming, 302

UseSqlSnapshot parameter, 82

V
values

arithmetic operations, 108–110
assigning to variables, 88, 110–111
comparing, 112–115
matching, 112–115
null, 97
retrieving, 188
true/false. See true/false values

347Index

variables, 88–101
assigning values to, 88, 110–111
automatic, 96–98
clearing values, 89
creating, 88
data types, 90–92
deleting, 89
environment, 100–101
fixed, 96
methods in, 92–96
preference, 98–100
properties in, 92–96
retrieving, 89
working with, 88–89

Verbose parameter, 159
$VerbosePreference variable, 100
version history, 273–275
versioning, 271–279
video files, 11
views

creating, 229–230
described, 227
item order, 228
managing, 227–231
modifying, 227–229
removing, 230–231
retrieving, 227–228

Views property, 227–228
ViewStyles property, 228
virtual servers, 23
Visio Services, 6, 13, 45
Visual Studio, 45
visual upgrades, 15–16

W
$WarningPreference variable, 100
WCF web services, 283
web analytics report, 39, 40
web applications

anonymous access, 78–79
attaching content databases, 74
configuring, 78–79
considerations, 178
creating, 79–80, 158, 167–168, 179
e-mail addresses for, 78–79
extending, 23, 168–169
extranet zones, 166–173
managed accounts, 166–167
managing, 33–35, 77–80
modifying, 78–79
naming, 169
new features, 178–180
Office Web Applications, 6

overview, 23, 166
reattaching content databases to, 313
removing, 80
retrieving content databases, 74
retrieving existing, 169
returning, 78
sharing service applications

between, 22, 36
working with, 165–180

Web Applications Management page, 33–35
web content management, 11
web parts, 28. See also specific web parts
web templates, 68
WebApplication parameter, 76
–WebApplication parameter, 174
WhatIf parameter, 65
$WhatIfPreference variable, 100
Where-Object cmdlet, 132, 134–135, 188, 197, 242
while loop, 130–131
wikis, 8
wildcard pattern matching, 128
wildcards, 59
Windows authentication, 297
Windows Data Protection API, 157
Windows Identity Foundation framework, 19
Windows PowerShell. See PowerShell
Windows Remote Management (WinRM),

148–151
WinRM (Windows Remote Management),

148–151
[wmi] type accelerator, 91
workflows, 45, 202
Write-Host cmdlet, 205
WS-Management protocol, 148–151
.wsp files, 45
WSS_ADMIN_WPG local security group, 72

X
XML code, 310
XML data, 309
XML files, 62, 312, 313–315
[xml] type accelerator, 91
XMLDocument object, 309–310
–xor operator, 116

Z
zone information, 143
Zone parameter, 80
zones, 23, 80, 166–173

	Contents
	Foreword
	Acknowledgments
	Introduction
	Part I: An Introduction to SharePoint 2010
	1 Overview of SharePoint 2010
	Capability Areas of SharePoint 2010
	Improvements for Administrators in SharePoint 2010
	System Requirements
	Architectural Components
	Summary

	2 Managing SharePoint 2010
	Central Administration
	STSADM
	SharePoint Designer
	Summary

	Part II: An Introduction to PowerShell in SharePoint 2010
	3 Getting Started with PowerShell in SharePoint 2010
	Starting Up Windows PowerShell
	Windows PowerShell Basics
	SharePoint 2010 Cmdlets
	Pipelines
	Summary

	4 Managing SharePoint 2010 with Windows PowerShell
	Managing Permissions in SharePoint 2010
	Managing Content Databases in SharePoint 2010
	Managing SharePoint 2010 Web Applications
	Managing SharePoint 2010 Sites
	Managing SharePoint 2010 Sites
	Summary

	5 Variables, Arrays, and Hashtables
	Variables in Windows PowerShell
	Arrays in Windows PowerShell
	Hashtables in Windows PowerShell
	Summary

	6 Operators
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Redirection Operators
	Type Operators
	Special Operators
	Summary

	7 Flow Control and Object Disposal
	Conditional Statements
	Looping Statements
	Flow-Control Cmdlets
	Object Disposal
	Summary

	8 Functions, Scripts, and Remoting
	Windows PowerShell Functions
	Windows PowerShell Scripts
	Windows PowerShell Remoting
	Summary

	Part III: SharePoint 2010 and PowerShell: Real-World Solutions
	9 Scripted Installation
	Scripted Installation of SharePoint 2010 Using Windows PowerShell
	Automate a SharePoint 2010 Installation
	Connecting and Disconnecting Servers with Windows PowerShell
	Additional Functionality in SharePoint 2010
	Summary

	10 Working with Web Applications
	Extending a Web Application
	Deploying Solution Packages
	Additional Functionality in SharePoint 2010
	Summary

	11 Working with Site Collections
	Creating Site Collections Based on an Excel Spreadsheet
	Creating Site Collections Based on Items in a SharePoint 2010 List
	Additional Functionality in SharePoint 2010
	Summary

	12 Managing Sites
	Validating Site Usage
	Getting Site Contact Information
	Check Site Usage Script
	Additional Functionality in SharePoint 2010
	Summary

	13 Managing the Look and Feel of Sites
	Managing Themes
	Changing the Site Logo, Title, and Description
	Managing Navigation
	Additional Functionality in SharePoint 2010
	Summary

	14 Working with SharePoint Lists
	Managing SharePoint Lists
	Managing SharePoint Fields
	Managing SharePoint Views
	Additional Functionality in SharePoint 2010
	Summary

	15 Managing SharePoint List Items
	Creating List Items
	Updating List Items
	Deleting List Items
	Copying List Items
	Additional Functionality in SharePoint 2010
	Summary

	16 Managing Documents in Document Libraries
	Working with Document Libraries
	Managing Content Types
	Additional Functionality in SharePoint 2010
	Summary

	17 Managing Versioning
	Content Approval
	Version History
	Draft Item Security
	Require Check Out
	Additional Functionality in SharePoint 2010
	Summary

	18 Managing Service Applications
	Working with Service Applications
	Sharing Service Applications Between Farms
	Additional Functionality in SharePoint 2010
	Summary

	19 Managing Users and Groups
	Working with Groups
	Working with Users
	Additional Functionality in SharePoint 2010
	Summary

	20 Working with Content Databases
	Managing Content Database Naming
	Setting Up Remote BLOB Storage
	Additional Functionality in SharePoint 2010
	Summary

	21 Backup and Restore
	Backing Up and Restoring SharePoint Farms
	Creating Database Snapshots
	Exporting and Importing Sites, Lists, and List Items
	Restoring Data from an Unattached Content Database
	Additional Functionality in SharePoint 2010
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

